-
1
-
-
0346718762
-
Stochastic integration with respect to the fractional Brownian motion
-
Alós E., Nualart D. Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 2003, 75(3):129-152.
-
(2003)
Stoch. Stoch. Rep.
, vol.75
, Issue.3
, pp. 129-152
-
-
Alós, E.1
Nualart, D.2
-
2
-
-
0001051911
-
White noise driven parabolic SPDEs with measurable drift
-
Bally V., Gyöngy I., Pardoux E. White noise driven parabolic SPDEs with measurable drift. J. Funct. Anal. 1994, 120:484-510.
-
(1994)
J. Funct. Anal.
, vol.120
, pp. 484-510
-
-
Bally, V.1
Gyöngy, I.2
Pardoux, E.3
-
4
-
-
40549130028
-
On a class of stochastic Anderson models with fractional noises
-
Bo L., Jiang Y., Wang Y. On a class of stochastic Anderson models with fractional noises. Stoch. Anal. Appl. 2008, 26(2):256-273.
-
(2008)
Stoch. Anal. Appl.
, vol.26
, Issue.2
, pp. 256-273
-
-
Bo, L.1
Jiang, Y.2
Wang, Y.3
-
5
-
-
56349090032
-
Stochastic Cahn-Hilliard equation with fractional noise
-
Bo L., Jiang Y., Wang Y. Stochastic Cahn-Hilliard equation with fractional noise. Stoch. Dyn. 2008, 8(4):643-665.
-
(2008)
Stoch. Dyn.
, vol.8
, Issue.4
, pp. 643-665
-
-
Bo, L.1
Jiang, Y.2
Wang, Y.3
-
6
-
-
33746316438
-
Stochastic Cahn-Hilliard partial differential equations with Lévy spacetime noises
-
Bo L., Wang Y. Stochastic Cahn-Hilliard partial differential equations with Lévy spacetime noises. Stoch. Dyn. 2006, 6(2):229-244.
-
(2006)
Stoch. Dyn.
, vol.6
, Issue.2
, pp. 229-244
-
-
Bo, L.1
Wang, Y.2
-
7
-
-
77956834067
-
A mathematical model illustrating the theory of turbulence
-
Academic Press, New York, R. von Mises, T. von Kármán (Eds.)
-
Burgers J. A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics 1948, 171-199. Academic Press, New York. R. von Mises, T. von Kármán (Eds.).
-
(1948)
Advances in Applied Mechanics
, pp. 171-199
-
-
Burgers, J.1
-
9
-
-
0033228798
-
Large deviations for a Burgers'-type SPDE
-
Cardon-Weber C. Large deviations for a Burgers'-type SPDE. Stochastic Process. Appl. 1999, 84:53-70.
-
(1999)
Stochastic Process. Appl.
, vol.84
, pp. 53-70
-
-
Cardon-Weber, C.1
-
10
-
-
1542576856
-
Cahn-Hilliard stochastic equation: existence of the solution and of its density
-
Cardon-Weber C. Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernoulli 2001, 7(5):777-816.
-
(2001)
Bernoulli
, vol.7
, Issue.5
, pp. 777-816
-
-
Cardon-Weber, C.1
-
12
-
-
0007282081
-
Stochastic Cahn-Hilliard equation
-
Da Prato G., Debussche A. Stochastic Cahn-Hilliard equation. Nonlinear Anal. 1996, 26:241-263.
-
(1996)
Nonlinear Anal.
, vol.26
, pp. 241-263
-
-
Da Prato, G.1
Debussche, A.2
-
13
-
-
33846284902
-
One-dimensional stochastic Burgers equation driven by Lévy processes
-
Dong Z., Xu T. One-dimensional stochastic Burgers equation driven by Lévy processes. J. Funct. Anal. 2007, 243:631-678.
-
(2007)
J. Funct. Anal.
, vol.243
, pp. 631-678
-
-
Dong, Z.1
Xu, T.2
-
14
-
-
0039403112
-
Existence and uniqueness results for semilinear stochastic partial differential equations
-
Gyöngy I. Existence and uniqueness results for semilinear stochastic partial differential equations. Stochastic Process. Appl. 1998, 73:271-299.
-
(1998)
Stochastic Process. Appl.
, vol.73
, pp. 271-299
-
-
Gyöngy, I.1
-
15
-
-
0039526862
-
On the stochastic Burgers' equation in the real line
-
Gyöngy I., Nualart D. On the stochastic Burgers' equation in the real line. Ann. Probab. 1999, 27(2):782-802.
-
(1999)
Ann. Probab.
, vol.27
, Issue.2
, pp. 782-802
-
-
Gyöngy, I.1
Nualart, D.2
-
17
-
-
0001059286
-
Heat equations with fractional white noise potentials
-
Hu Y. Heat equations with fractional white noise potentials. Appl. Math. Optim. 2001, 43:221-243.
-
(2001)
Appl. Math. Optim.
, vol.43
, pp. 221-243
-
-
Hu, Y.1
-
18
-
-
74849133510
-
Large deviation principle for the fourth-order stochastic heat equations with fractional noises
-
Jiang Y., Shi K., Wang Y. Large deviation principle for the fourth-order stochastic heat equations with fractional noises. Acta Math. Sin. (Engl. Ser.) 2010, 26(1):89-106.
-
(2010)
Acta Math. Sin. (Engl. Ser.)
, vol.26
, Issue.1
, pp. 89-106
-
-
Jiang, Y.1
Shi, K.2
Wang, Y.3
-
19
-
-
77952881297
-
Stochastic fractional Anderson models with fractional noises
-
Jiang Y., Shi K., Wang Y. Stochastic fractional Anderson models with fractional noises. Chin. Ann. Math. Ser. B 2010, 31(1):101-118.
-
(2010)
Chin. Ann. Math. Ser. B
, vol.31
, Issue.1
, pp. 101-118
-
-
Jiang, Y.1
Shi, K.2
Wang, Y.3
-
20
-
-
0000501589
-
Fractional Brownian motions, fractional noises and applications
-
Mandelbrot B., Van Ness J. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10(4):422-437.
-
(1968)
SIAM Rev.
, vol.10
, Issue.4
, pp. 422-437
-
-
Mandelbrot, B.1
Van Ness, J.2
-
21
-
-
18044400859
-
Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion
-
Mémin J., Mishura Y., Valkeila E. Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion. Statist. Probab. Lett. 2001, 51:197-206.
-
(2001)
Statist. Probab. Lett.
, vol.51
, pp. 197-206
-
-
Mémin, J.1
Mishura, Y.2
Valkeila, E.3
-
23
-
-
13344283509
-
Stochastic calculus with respect to the fractional Brownian motion and applications
-
Nualart D. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 2003, vol. 336:3-39.
-
(2003)
Contemp. Math.
, vol.336
, pp. 3-39
-
-
Nualart, D.1
-
24
-
-
40549124076
-
Regularization of quasilinear heat equations by a fractional noise
-
Nualart D., Ouknine Y. Regularization of quasilinear heat equations by a fractional noise. Stoch. Dyn. 2004, 4(2):201-221.
-
(2004)
Stoch. Dyn.
, vol.4
, Issue.2
, pp. 201-221
-
-
Nualart, D.1
Ouknine, Y.2
-
25
-
-
0005247131
-
Generalized Burgers equations and Euler-Painlevé transcendents. I
-
Sachdev P., Nair K., Tikekar V. Generalized Burgers equations and Euler-Painlevé transcendents. I. J. Math. Phys. 1986, 27(6):1506-1522.
-
(1986)
J. Math. Phys.
, vol.27
, Issue.6
, pp. 1506-1522
-
-
Sachdev, P.1
Nair, K.2
Tikekar, V.3
-
26
-
-
0142246342
-
Direct similarity analysis of generalized Burgers equations and perturbation solutions of Euler-Painlevé transcendents
-
Vaganan B., Asokan R. Direct similarity analysis of generalized Burgers equations and perturbation solutions of Euler-Painlevé transcendents. Stud. Appl. Math. 2003, 111(4):435-451.
-
(2003)
Stud. Appl. Math.
, vol.111
, Issue.4
, pp. 435-451
-
-
Vaganan, B.1
Asokan, R.2
-
27
-
-
0000659593
-
An introduction to stochastic partial differential equations
-
Springer, Berlin
-
Walsh J. An introduction to stochastic partial differential equations. Lecture Notes in Math. 1986, vol. 1180:265-439. Springer, Berlin.
-
(1986)
Lecture Notes in Math.
, vol.1180
, pp. 265-439
-
-
Walsh, J.1
-
28
-
-
77956566309
-
High-order heat equations driven by multi-parameter fractional noises
-
Wei T. High-order heat equations driven by multi-parameter fractional noises. Acta Math. Sin. (Engl. Ser.) 2010, 26(10):1943-1960.
-
(2010)
Acta Math. Sin. (Engl. Ser.)
, vol.26
, Issue.10
, pp. 1943-1960
-
-
Wei, T.1
-
29
-
-
0038558334
-
On the role of the Besov spaces for the solutions of the generalized Burgers equation in homogeneous Sobolev spaces
-
Zahrouni E. On the role of the Besov spaces for the solutions of the generalized Burgers equation in homogeneous Sobolev spaces. Nonlinear Anal. 2003, 54(1):39-62.
-
(2003)
Nonlinear Anal.
, vol.54
, Issue.1
, pp. 39-62
-
-
Zahrouni, E.1
-
30
-
-
77952878929
-
SPDEs driven by space-time white noises in high dimensions: absolute continuity of the law and convergence of solutions
-
Zhang T., Zheng W. SPDEs driven by space-time white noises in high dimensions: absolute continuity of the law and convergence of solutions. Stoch. Stoch. Rep. 2003, 75(3):103-128.
-
(2003)
Stoch. Stoch. Rep.
, vol.75
, Issue.3
, pp. 103-128
-
-
Zhang, T.1
Zheng, W.2
|