-
1
-
-
33746316438
-
Stochatic Cahn-Hilliard partial differential equations with Levy spacetime noises
-
Bo, L., and Wang, Y. 2006. Stochatic Cahn-Hilliard partial differential equations with Levy spacetime noises. Stochastic Dynamics 6(2):229-244.
-
(2006)
Stochastic Dynamics
, vol.6
, Issue.2
, pp. 229-244
-
-
Bo, L.1
Wang, Y.2
-
2
-
-
1542576856
-
Cahn-Hilliard stochastic equation: Existence of the solution and of its density
-
Cardon-Weber, C. 2001. Cahn-Hilliard stochastic equation: Existence of the solution and of its density. Bernoulli 7(5):777-816.
-
(2001)
Bernoulli
, vol.7
, Issue.5
, pp. 777-816
-
-
Cardon-Weber, C.1
-
3
-
-
0033274590
-
Chaos decomposition of multiple fractional integrals and applications
-
Dasgupta, A., and Kallianpur, G. 1999. Chaos decomposition of multiple fractional integrals and applications. Probability Theory Related Fields 115:527-548.
-
(1999)
Probability Theory Related Fields
, vol.115
, pp. 527-548
-
-
Dasgupta, A.1
Kallianpur, G.2
-
5
-
-
0001059286
-
Heat equations with fractional white noise potentials
-
Hu, Y. 2001. Heat equations with fractional white noise potentials. Applied Mathematics Optimization 43:221-243.
-
(2001)
Applied Mathematics Optimization
, vol.43
, pp. 221-243
-
-
Hu, Y.1
-
6
-
-
26844440806
-
Chaos expansion of heat equations with white noise potentials
-
Hu, Y. 2002. Chaos expansion of heat equations with white noise potentials. Potential Analysis 16:45-66.
-
(2002)
Potential Analysis
, vol.16
, pp. 45-66
-
-
Hu, Y.1
-
7
-
-
18044400859
-
Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion
-
Mémin, J., Mishura, Y., and Valkeila, E. 2001. Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion. Statistist Probability Letters 51:197-206.
-
(2001)
Statistist Probability Letters
, vol.51
, pp. 197-206
-
-
Mémin, J.1
Mishura, Y.2
Valkeila, E.3
-
8
-
-
0000620797
-
Long-time existence for the heat equation with a noise term
-
Mueller, C. 1991. Long-time existence for the heat equation with a noise term. Probability Theory Related Fields 90:505-517.
-
(1991)
Probability Theory Related Fields
, vol.90
, pp. 505-517
-
-
Mueller, C.1
-
9
-
-
40549098757
-
A measure-valued process related to the parabolic Anderson model
-
Mueller, C., and Tribe, R. 2002. A measure-valued process related to the parabolic Anderson model. Progress in Probabilty 52:219-227.
-
(2002)
Progress in Probabilty
, vol.52
, pp. 219-227
-
-
Mueller, C.1
Tribe, R.2
-
10
-
-
40549124076
-
Regularization of quasilinear heat equations by a fractional noise
-
Nualart, D., and Ouknine, Y. 2004. Regularization of quasilinear heat equations by a fractional noise. Stochastic Dynamics 4:201-221.
-
(2004)
Stochastic Dynamics
, vol.4
, pp. 201-221
-
-
Nualart, D.1
Ouknine, Y.2
-
11
-
-
0031237223
-
Weighted stochastic Sobolev spaces and bilinear SPDEs driven by space-time white noise
-
Nualart, D., and Rozovskii, B. 1997. Weighted stochastic Sobolev spaces and bilinear SPDEs driven by space-time white noise. Journal of Functional Analysis 149(2):200-225.
-
(1997)
Journal of Functional Analysis
, vol.149
, Issue.2
, pp. 200-225
-
-
Nualart, D.1
Rozovskii, B.2
-
12
-
-
38249022603
-
Generalized Brownian functionals and the solution to a stochastic partial differential equation
-
Nualart, D., and Zakai, M. 1989. Generalized Brownian functionals and the solution to a stochastic partial differential equation. Journal of Functional Analysis 84(2):279-296.
-
(1989)
Journal of Functional Analysis
, vol.84
, Issue.2
, pp. 279-296
-
-
Nualart, D.1
Zakai, M.2
-
13
-
-
0003797958
-
-
Technical University of Kosice, Slovak Republic
-
Podlubny, I. 1999. Fractional Differential Equations. 198 Technical University of Kosice, Slovak Republic.
-
(1999)
Fractional Differential Equations
, pp. 198
-
-
Podlubny, I.1
-
14
-
-
26444583019
-
Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behavior
-
Uemura, H. 1996. Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behavior. Stochastic Analysis Applications 14:487-506.
-
(1996)
Stochastic Analysis Applications
, vol.14
, pp. 487-506
-
-
Uemura, H.1
-
15
-
-
0000659593
-
An Introduction to Stochastic Partial Differential Equations
-
Springer, Berlin, New York
-
Walsh, J. 1986. An Introduction to Stochastic Partial Differential Equations. Lecture Notes in Math. 1180:265-439. Springer, Berlin, New York.
-
(1986)
Lecture Notes in Math
, vol.1180
, pp. 265-439
-
-
Walsh, J.1
|