메뉴 건너뛰기




Volumn 26, Issue 2, 2008, Pages 256-273

On a class of stochastic Anderson models with fractional noises

Author keywords

Fourth order Anderson models; Fractional noises; Lyapunov exponent; Regularity

Indexed keywords


EID: 40549130028     PISSN: 07362994     EISSN: 15329356     Source Type: Journal    
DOI: 10.1080/07362990701857095     Document Type: Article
Times cited : (29)

References (15)
  • 1
    • 33746316438 scopus 로고    scopus 로고
    • Stochatic Cahn-Hilliard partial differential equations with Levy spacetime noises
    • Bo, L., and Wang, Y. 2006. Stochatic Cahn-Hilliard partial differential equations with Levy spacetime noises. Stochastic Dynamics 6(2):229-244.
    • (2006) Stochastic Dynamics , vol.6 , Issue.2 , pp. 229-244
    • Bo, L.1    Wang, Y.2
  • 2
    • 1542576856 scopus 로고    scopus 로고
    • Cahn-Hilliard stochastic equation: Existence of the solution and of its density
    • Cardon-Weber, C. 2001. Cahn-Hilliard stochastic equation: Existence of the solution and of its density. Bernoulli 7(5):777-816.
    • (2001) Bernoulli , vol.7 , Issue.5 , pp. 777-816
    • Cardon-Weber, C.1
  • 3
    • 0033274590 scopus 로고    scopus 로고
    • Chaos decomposition of multiple fractional integrals and applications
    • Dasgupta, A., and Kallianpur, G. 1999. Chaos decomposition of multiple fractional integrals and applications. Probability Theory Related Fields 115:527-548.
    • (1999) Probability Theory Related Fields , vol.115 , pp. 527-548
    • Dasgupta, A.1    Kallianpur, G.2
  • 5
    • 0001059286 scopus 로고    scopus 로고
    • Heat equations with fractional white noise potentials
    • Hu, Y. 2001. Heat equations with fractional white noise potentials. Applied Mathematics Optimization 43:221-243.
    • (2001) Applied Mathematics Optimization , vol.43 , pp. 221-243
    • Hu, Y.1
  • 6
    • 26844440806 scopus 로고    scopus 로고
    • Chaos expansion of heat equations with white noise potentials
    • Hu, Y. 2002. Chaos expansion of heat equations with white noise potentials. Potential Analysis 16:45-66.
    • (2002) Potential Analysis , vol.16 , pp. 45-66
    • Hu, Y.1
  • 7
    • 18044400859 scopus 로고    scopus 로고
    • Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion
    • Mémin, J., Mishura, Y., and Valkeila, E. 2001. Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion. Statistist Probability Letters 51:197-206.
    • (2001) Statistist Probability Letters , vol.51 , pp. 197-206
    • Mémin, J.1    Mishura, Y.2    Valkeila, E.3
  • 8
    • 0000620797 scopus 로고
    • Long-time existence for the heat equation with a noise term
    • Mueller, C. 1991. Long-time existence for the heat equation with a noise term. Probability Theory Related Fields 90:505-517.
    • (1991) Probability Theory Related Fields , vol.90 , pp. 505-517
    • Mueller, C.1
  • 9
    • 40549098757 scopus 로고    scopus 로고
    • A measure-valued process related to the parabolic Anderson model
    • Mueller, C., and Tribe, R. 2002. A measure-valued process related to the parabolic Anderson model. Progress in Probabilty 52:219-227.
    • (2002) Progress in Probabilty , vol.52 , pp. 219-227
    • Mueller, C.1    Tribe, R.2
  • 10
    • 40549124076 scopus 로고    scopus 로고
    • Regularization of quasilinear heat equations by a fractional noise
    • Nualart, D., and Ouknine, Y. 2004. Regularization of quasilinear heat equations by a fractional noise. Stochastic Dynamics 4:201-221.
    • (2004) Stochastic Dynamics , vol.4 , pp. 201-221
    • Nualart, D.1    Ouknine, Y.2
  • 11
    • 0031237223 scopus 로고    scopus 로고
    • Weighted stochastic Sobolev spaces and bilinear SPDEs driven by space-time white noise
    • Nualart, D., and Rozovskii, B. 1997. Weighted stochastic Sobolev spaces and bilinear SPDEs driven by space-time white noise. Journal of Functional Analysis 149(2):200-225.
    • (1997) Journal of Functional Analysis , vol.149 , Issue.2 , pp. 200-225
    • Nualart, D.1    Rozovskii, B.2
  • 12
    • 38249022603 scopus 로고
    • Generalized Brownian functionals and the solution to a stochastic partial differential equation
    • Nualart, D., and Zakai, M. 1989. Generalized Brownian functionals and the solution to a stochastic partial differential equation. Journal of Functional Analysis 84(2):279-296.
    • (1989) Journal of Functional Analysis , vol.84 , Issue.2 , pp. 279-296
    • Nualart, D.1    Zakai, M.2
  • 13
  • 14
    • 26444583019 scopus 로고    scopus 로고
    • Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behavior
    • Uemura, H. 1996. Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behavior. Stochastic Analysis Applications 14:487-506.
    • (1996) Stochastic Analysis Applications , vol.14 , pp. 487-506
    • Uemura, H.1
  • 15
    • 0000659593 scopus 로고
    • An Introduction to Stochastic Partial Differential Equations
    • Springer, Berlin, New York
    • Walsh, J. 1986. An Introduction to Stochastic Partial Differential Equations. Lecture Notes in Math. 1180:265-439. Springer, Berlin, New York.
    • (1986) Lecture Notes in Math , vol.1180 , pp. 265-439
    • Walsh, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.