-
1
-
-
78650507737
-
-
JMACEP 0959-9428 10.1039/c0jm01645d
-
M. Ahmad and J. Zhu, J. Mater. Chem. JMACEP 0959-9428 10.1039/c0jm01645d 21, 599 (2011).
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 599
-
-
Ahmad, M.1
Zhu, J.2
-
2
-
-
0035827304
-
Room-temperature ultraviolet nanowire nanolasers
-
DOI 10.1126/science.1060367
-
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 0036-8075 10.1126/science.1060367 292, 1897 (2001). (Pubitemid 32538361)
-
(2001)
Science
, vol.292
, Issue.5523
, pp. 1897-1899
-
-
Huang, M.H.1
Mao, S.2
Feick, H.3
Yan, H.4
Wu, Y.5
Kind, H.6
Weber, E.7
Russo, R.8
Yang, P.9
-
3
-
-
0035831290
-
Nanobelts of semiconducting oxides
-
DOI 10.1126/science.1058120
-
W. Z. Pan, Z. Dai, and Z. L. Wang, Science SCIEAS 0036-8075 10.1126/science.1058120 291, 1947 (2001). (Pubitemid 32216991)
-
(2001)
Science
, vol.291
, Issue.5510
, pp. 1947-1949
-
-
Zheng Wei Pan1
Zu Rong Dai2
Zhong Lin Wang3
-
4
-
-
3142766180
-
-
JPCBFK 1520-6106 10.1021/jp048482e
-
X. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, J. Phys. Chem. B JPCBFK 1520-6106 10.1021/jp048482e 108, 8773 (2004).
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 8773
-
-
Wang, X.1
Ding, Y.2
Summers, C.J.3
Wang, Z.L.4
-
5
-
-
34547193740
-
Observation of depolarized ZnO(0001) monolayers: Formation of unreconstructed planar sheets
-
DOI 10.1103/PhysRevLett.99.026102
-
C. Tusche, H. L. Meyerheim, and J. Kirschner, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.026102 99, 026102 (2007). (Pubitemid 47117043)
-
(2007)
Physical Review Letters
, vol.99
, Issue.2
, pp. 026102
-
-
Tusche, C.1
Meyerheim, H.L.2
Kirschner, J.3
-
6
-
-
77957974195
-
-
PRLTAO 1932-7447 10.1021/jp104706q
-
L. Wang, K. Chen, and L. Dong, J. Phys. Chem. C PRLTAO 1932-7447 10.1021/jp104706q 114, 17358 (2010).
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 17358
-
-
Wang, L.1
Chen, K.2
Dong, L.3
-
7
-
-
76949097690
-
-
PSSABA 0031-8965 10.1002/pssa.200982485
-
T. G. G. Maffeis, M. W. Penny, J. D. W. Garbut, and S. P. Wilks, Phys. Status Solidi PSSABA 0031-8965 10.1002/pssa.200982485 207, 282 (2010).
-
(2010)
Phys. Status Solidi
, vol.207
, pp. 282
-
-
Maffeis, T.G.G.1
Penny, M.W.2
Garbut, J.D.W.3
Wilks, S.P.4
-
8
-
-
33645810366
-
-
SCIEAS 0036-8075 10.1126/science.1124005
-
Z. L. Wang and S. J. Song, Science SCIEAS 0036-8075 10.1126/science. 1124005 312, 242 (2006).
-
(2006)
Science
, vol.312
, pp. 242
-
-
Wang, Z.L.1
Song, S.J.2
-
9
-
-
3342926235
-
c ferromagnetic nanocrystalline thin films
-
DOI 10.1021/ja048427j
-
N. S. Norberg, K. R. Kittilstved, J. E. Amonette, R. K. Kukkadapu, D. A. Schwartz, and D. R. Gamelin, J. Am. Chem. Soc. JACSAT 0002-7863 10.1021/ja048427j 126, 9387 (2004). (Pubitemid 38992334)
-
(2004)
Journal of the American Chemical Society
, vol.126
, Issue.30
, pp. 9387-9398
-
-
Norberg, N.S.1
Kittilstved, K.R.2
Amonette, J.E.3
Kukkadapu, R.K.4
Schwartz, D.A.5
Gamelin, D.R.6
-
11
-
-
19744382602
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.177206
-
M. Venkatesan, C. B. Fitzgerald, J. G. Lunney, and J. M. D. Coey, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.177206 93, 177206 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 177206
-
-
Venkatesan, M.1
Fitzgerald, C.B.2
Lunney, J.G.3
Coey, J.M.D.4
-
12
-
-
45749140048
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.100.256401
-
A. Walsh, J. L. F. Silva, and S.-H. Wei, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.256401 100, 256401 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 256401
-
-
Walsh, A.1
Silva, J.L.F.2
Wei, S.-H.3
-
13
-
-
44949179694
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.77.241201
-
S. Lany, H. Raebiger, and A. Zunger, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.77.241201 77, 241201 (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 241201
-
-
Lany, S.1
Raebiger, H.2
Zunger, A.3
-
14
-
-
50449088974
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.78.054428
-
C. D. Pemmaraju, R. Hanafin, T. Archer, H. B. Braun, and S. Sanvito, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.78.054428 78, 054428 (2008).
-
(2008)
Phys. Rev. B
, vol.78
, pp. 054428
-
-
Pemmaraju, C.D.1
Hanafin, R.2
Archer, T.3
Braun, H.B.4
Sanvito, S.5
-
15
-
-
68949191019
-
-
PRLTAO 1748-3387 10.1038/nnano.2009.181
-
Z. H. Zhang, X. Wang, J. B. Xu, S. Muller, C. Ronning, and Q. Li, Nat. Nanotechnol. PRLTAO 1748-3387 10.1038/nnano.2009.181 4, 523 (2009).
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 523
-
-
Zhang, Z.H.1
Wang, X.2
Xu, J.B.3
Muller, S.4
Ronning, C.5
Li, Q.6
-
16
-
-
77952029217
-
-
JACSAT 0002-7863 10.1021/ja100912k
-
X. Wang, F. Song, Q. Chen, T. Wang, J. Wang, P. Liu, M. Shen, J. Wan, G. Wang, and J. B. Xu, J. Am. Chem. Soc. JACSAT 0002-7863 10.1021/ja100912k 132, 6492 (2010).
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 6492
-
-
Wang, X.1
Song, F.2
Chen, Q.3
Wang, T.4
Wang, J.5
Liu, P.6
Shen, M.7
Wan, J.8
Wang, G.9
Xu, J.B.10
-
17
-
-
77951073843
-
-
NALEFD 1530-6984 10.1021/nl1001444
-
R. Podila, Nano Lett. NALEFD 1530-6984 10.1021/nl1001444 10, 1383 (2010).
-
(2010)
Nano Lett.
, vol.10
, pp. 1383
-
-
Podila, R.1
-
18
-
-
77955616908
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.81.195413
-
T. M. Schmidt, R. H. Miwa, and A. Fazzio, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.81.195413 81, 195413 (2010).
-
(2010)
Phys. Rev. B
, vol.81
, pp. 195413
-
-
Schmidt, T.M.1
Miwa, R.H.2
Fazzio, A.3
-
19
-
-
35649000472
-
Metallic edges in zinc oxide nanoribbons
-
DOI 10.1016/j.cplett.2007.10.023, PII S0009261407013802
-
A. R. Botello-Mendéz, M. T. Martínez-Martínez, F. Lópes-Urías, M. Terrones, and H. Terrones, Chem. Phys. Lett. CHPLBC 0009-2614 10.1016/j.cplett.2007.10.023 448, 258 (2007). (Pubitemid 350027803)
-
(2007)
Chemical Physics Letters
, vol.448
, Issue.4-6
, pp. 258-263
-
-
Botello-Mendez, A.R.1
Martinez-Martinez, M.T.2
Lopez-Urias, F.3
Terrones, M.4
Terrones, H.5
-
20
-
-
48449101037
-
-
NALEFD 1530-6984 10.1021/nl072511q
-
A. R. Botello-Mendéz, F. Lópes-Urías, M. Terrones, and H. Terrones, Nano Lett. NALEFD 1530-6984 10.1021/nl072511q 8, 1562 (2008).
-
(2008)
Nano Lett.
, vol.8
, pp. 1562
-
-
Botello-Mendéz, A.R.1
Lópes-Urías, F.2
Terrones, M.3
Terrones, H.4
-
21
-
-
79958781240
-
-
JAPIAU 0021-8979 10.1063/1.3590152
-
H. Y. Shih, Y. T. Chen, N. H. Huang, C. M. Wei, and Y. F. Chen, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.3590152 109, 103523 (2011).
-
(2011)
J. Appl. Phys.
, vol.109
, pp. 103523
-
-
Shih, H.Y.1
Chen, Y.T.2
Huang, N.H.3
Wei, C.M.4
Chen, Y.F.5
-
22
-
-
33144486742
-
Graphitic nanofilms as precursors to eurtzite gilms: Theory
-
DOI 10.1103/PhysRevLett.96.066102
-
C. L. Freeman, F. Claeyssens, N. L. Allan, and J. H. Harding, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.066102 96, 066102 (2006). (Pubitemid 43271047)
-
(2006)
Physical Review Letters
, vol.96
, Issue.6
, pp. 066102
-
-
Freeman, C.L.1
Claeyssens, F.2
Allan, N.L.3
Harding, J.H.4
-
23
-
-
29544437003
-
Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states
-
DOI 10.1103/PhysRevB.72.174431, 174431
-
H. Lee, Y.-W. Son, N. Park, S. Han, and J. Yu, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.72.174431 72, 174431 (2005). (Pubitemid 43017966)
-
(2005)
Physical Review B - Condensed Matter and Materials Physics
, vol.72
, Issue.17
, pp. 1-8
-
-
Lee, H.1
Son, Y.-W.2
Park, N.3
Han, S.4
Yu, J.5
-
24
-
-
34547293456
-
Electronic and transport properties of boron-doped graphene nanoribbons
-
DOI 10.1103/PhysRevLett.98.196803
-
T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.196803 98, 196803 (2007). (Pubitemid 47139493)
-
(2007)
Physical Review Letters
, vol.98
, Issue.19
, pp. 196803
-
-
Martins, T.B.1
Miwa, R.H.2
Da Silva, A.J.R.3
Fazzio, A.4
-
25
-
-
70349498811
-
-
APPLAB 0003-6951 10.1063/1.3231922
-
Q. Chen, L. Zhu, and J. Wang, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.3231922 95, 113116 (2009).
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 113116
-
-
Chen, Q.1
Zhu, L.2
Wang, J.3
-
26
-
-
77951706267
-
-
1936-0851 10.1021/nn901552b
-
L. Kou, C. Li, Z. Zhang, and W. Guo, ACS Nano 1936-0851 10.1021/nn901552b 4, 2124 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 2124
-
-
Kou, L.1
Li, C.2
Zhang, Z.3
Guo, W.4
-
27
-
-
0037171091
-
The SIESTA method for ab initio order-N materials simulation
-
DOI 10.1088/0953-8984/14/11/302, PII S0953898402307379
-
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys. Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/14/11/302 14, 2745 (2002). (Pubitemid 34288362)
-
(2002)
Journal of Physics Condensed Matter
, vol.14
, Issue.11
, pp. 2745-2779
-
-
Soler, J.M.1
Artacho, E.2
Gale, J.D.3
Garcia, A.4
Junquera, J.5
Ordejon, P.6
Sanchez-Portal, D.7
-
28
-
-
33744691386
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.45.566
-
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.45.566 45, 566 (1980).
-
(1980)
Phys. Rev. Lett.
, vol.45
, pp. 566
-
-
Ceperley, D.M.1
Alder, B.J.2
-
29
-
-
80455170628
-
-
Within the siesta code, the cutoff radius of the basis set (pseudoatomic orbitals) can be tuned by a single parameter, energy shift. For lower energy shift we have larger cutoff radii for the atomic orbitals, that is, the basis set has been improved. In the present work, we have considered an energy shift of 0.10 eV to determine the radius cutoff of the pseudoatomic orbitals. Here we verify the convergence of our total energy results for an energy shift of 0.05 eV
-
Within the siesta code, the cutoff radius of the basis set (pseudoatomic orbitals) can be tuned by a single parameter, energy shift. For lower energy shift we have larger cutoff radii for the atomic orbitals, that is, the basis set has been improved. In the present work, we have considered an energy shift of 0.10 eV to determine the radius cutoff of the pseudoatomic orbitals. Here we verify the convergence of our total energy results for an energy shift of 0.05 eV.
-
-
-
-
30
-
-
33645426115
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.43.1993
-
N. Troullier and J. L. Martins, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.43.1993 43, 1993 (1991).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 1993
-
-
Troullier, N.1
Martins, J.L.2
-
31
-
-
34447631717
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.76.035322
-
C. Li, W. Guo, Y. Kong, and H. Gao, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.76.035322 76, 035322 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 035322
-
-
Li, C.1
Guo, W.2
Kong, Y.3
Gao, H.4
-
32
-
-
34548177337
-
Wire versus tube: Stability of small one-dimensional ZnO nanostructures
-
DOI 10.1021/nl070788k
-
X. Shen, P. B. Allen, J. T. Muckerman, J. D. Davenport, and J.-C. Zheng, Nano Lett. NALEFD 1530-6984 10.1021/nl070788k 7, 2267 (2007). (Pubitemid 47310118)
-
(2007)
Nano Letters
, vol.7
, Issue.8
, pp. 2267-2271
-
-
Shen, X.1
Allen, P.B.2
Muckerman, J.T.3
Davenport, J.W.4
Zheng, J.-C.5
-
33
-
-
33846259723
-
Structural transformation of ZnO nanostructures
-
DOI 10.1063/1.2431073
-
L. Zhang and H. Huang, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2431073 90, 23115 (2007). (Pubitemid 46105610)
-
(2007)
Applied Physics Letters
, vol.90
, Issue.2
, pp. 023115
-
-
Zhang, L.1
Huang, H.2
-
34
-
-
34547184431
-
Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires
-
DOI 10.1063/1.2757147
-
H. Xu, A. L. Rosa, T. Frauenheim, R. Q. Zhang, and S. T. Lee, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2757147 91, 031914 (2007). (Pubitemid 47120665)
-
(2007)
Applied Physics Letters
, vol.91
, Issue.3
, pp. 031914
-
-
Xu, Hu.1
Rosa, A.L.2
Frauenheim, Th.3
Zhang, R.Q.4
Lee, S.T.5
-
35
-
-
67649180422
-
-
NNOTER 0957-4484 10.1088/0957-4484/20/21/215202
-
T. M. Schmidt and R. H. Miwa, Nanotech. NNOTER 0957-4484 10.1088/0957-4484/20/21/215202 20, 215202 (2009).
-
(2009)
Nanotech.
, vol.20
, pp. 215202
-
-
Schmidt, T.M.1
Miwa, R.H.2
-
36
-
-
2442537377
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.54.11169
-
G. Kresse and J. Furthmüller, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.54.11169 54, 11169 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169
-
-
Kresse, G.1
Furthmüller, J.2
-
37
-
-
25744460922
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.50.17953
-
P. E. Blöchl, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.50. 17953 50, 17953 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953
-
-
Blöchl, P.E.1
-
38
-
-
80455149282
-
-
For the ZnO bulk phase, the energy band gap increases by 0.55 eV, 0.66 →1.17 eV, within the DFT+U calculation
-
For the ZnO bulk phase, the energy band gap increases by 0.55 eV, 0.66 →1.17 eV, within the DFT+U calculation.
-
-
-
-
39
-
-
77957697236
-
-
NNOTER 1943-2879 10.1103/Physics.3.53
-
A. Zunger, S. Lany, and H. Raebiger, Physics NNOTER 1943-2879 10.1103/Physics.3.53 3, 53 (2010).
-
(2010)
Physics
, vol.3
, pp. 53
-
-
Zunger, A.1
Lany, S.2
Raebiger, H.3
-
40
-
-
33646509235
-
-
SSCOA4 0038-1098 10.1016/j.ssc.2006.03.002
-
G. M. Dalpian, S.-H. Wei, X. Gong, A. J. da Silva, and A. Fazzio, Solid State Commun. SSCOA4 0038-1098 10.1016/j.ssc.2006.03.002 138, 353 (2006).
-
(2006)
Solid State Commun.
, vol.138
, pp. 353
-
-
Dalpian, G.M.1
Wei, S.-H.2
Gong, X.3
Da Silva, A.J.4
Fazzio, A.5
-
41
-
-
80455170629
-
-
Within the LSDA approach, we find metallic spin-down channels for the FM Co-doped ZnO nanoribbon, however, by inclusion of the Hubbard U for the Zn and Co 3d orbitals, DFT+U calculations, we verify that those partially occupied metallic states are suppressed
-
Within the LSDA approach, we find metallic spin-down channels for the FM Co-doped ZnO nanoribbon, however, by inclusion of the Hubbard U for the Zn and Co 3d orbitals, DFT+U calculations, we verify that those partially occupied metallic states are suppressed.
-
-
-
|