메뉴 건너뛰기




Volumn 84, Issue 15, 2011, Pages

Piezomagnetic behavior of Co-doped ZnO nanoribbons

Author keywords

[No Author keywords available]

Indexed keywords


EID: 80455178799     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.84.155309     Document Type: Article
Times cited : (7)

References (41)
  • 1
    • 78650507737 scopus 로고    scopus 로고
    • JMACEP 0959-9428 10.1039/c0jm01645d
    • M. Ahmad and J. Zhu, J. Mater. Chem. JMACEP 0959-9428 10.1039/c0jm01645d 21, 599 (2011).
    • (2011) J. Mater. Chem. , vol.21 , pp. 599
    • Ahmad, M.1    Zhu, J.2
  • 3
    • 0035831290 scopus 로고    scopus 로고
    • Nanobelts of semiconducting oxides
    • DOI 10.1126/science.1058120
    • W. Z. Pan, Z. Dai, and Z. L. Wang, Science SCIEAS 0036-8075 10.1126/science.1058120 291, 1947 (2001). (Pubitemid 32216991)
    • (2001) Science , vol.291 , Issue.5510 , pp. 1947-1949
    • Zheng Wei Pan1    Zu Rong Dai2    Zhong Lin Wang3
  • 5
    • 34547193740 scopus 로고    scopus 로고
    • Observation of depolarized ZnO(0001) monolayers: Formation of unreconstructed planar sheets
    • DOI 10.1103/PhysRevLett.99.026102
    • C. Tusche, H. L. Meyerheim, and J. Kirschner, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.026102 99, 026102 (2007). (Pubitemid 47117043)
    • (2007) Physical Review Letters , vol.99 , Issue.2 , pp. 026102
    • Tusche, C.1    Meyerheim, H.L.2    Kirschner, J.3
  • 6
    • 77957974195 scopus 로고    scopus 로고
    • PRLTAO 1932-7447 10.1021/jp104706q
    • L. Wang, K. Chen, and L. Dong, J. Phys. Chem. C PRLTAO 1932-7447 10.1021/jp104706q 114, 17358 (2010).
    • (2010) J. Phys. Chem. C , vol.114 , pp. 17358
    • Wang, L.1    Chen, K.2    Dong, L.3
  • 8
    • 33645810366 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.1124005
    • Z. L. Wang and S. J. Song, Science SCIEAS 0036-8075 10.1126/science. 1124005 312, 242 (2006).
    • (2006) Science , vol.312 , pp. 242
    • Wang, Z.L.1    Song, S.J.2
  • 10
  • 12
    • 45749140048 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.100.256401
    • A. Walsh, J. L. F. Silva, and S.-H. Wei, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.256401 100, 256401 (2008).
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 256401
    • Walsh, A.1    Silva, J.L.F.2    Wei, S.-H.3
  • 13
    • 44949179694 scopus 로고    scopus 로고
    • PRBMDO 1098-0121 10.1103/PhysRevB.77.241201
    • S. Lany, H. Raebiger, and A. Zunger, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.77.241201 77, 241201 (2008).
    • (2008) Phys. Rev. B , vol.77 , pp. 241201
    • Lany, S.1    Raebiger, H.2    Zunger, A.3
  • 17
    • 77951073843 scopus 로고    scopus 로고
    • NALEFD 1530-6984 10.1021/nl1001444
    • R. Podila, Nano Lett. NALEFD 1530-6984 10.1021/nl1001444 10, 1383 (2010).
    • (2010) Nano Lett. , vol.10 , pp. 1383
    • Podila, R.1
  • 18
    • 77955616908 scopus 로고    scopus 로고
    • PRBMDO 1098-0121 10.1103/PhysRevB.81.195413
    • T. M. Schmidt, R. H. Miwa, and A. Fazzio, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.81.195413 81, 195413 (2010).
    • (2010) Phys. Rev. B , vol.81 , pp. 195413
    • Schmidt, T.M.1    Miwa, R.H.2    Fazzio, A.3
  • 22
    • 33144486742 scopus 로고    scopus 로고
    • Graphitic nanofilms as precursors to eurtzite gilms: Theory
    • DOI 10.1103/PhysRevLett.96.066102
    • C. L. Freeman, F. Claeyssens, N. L. Allan, and J. H. Harding, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.066102 96, 066102 (2006). (Pubitemid 43271047)
    • (2006) Physical Review Letters , vol.96 , Issue.6 , pp. 066102
    • Freeman, C.L.1    Claeyssens, F.2    Allan, N.L.3    Harding, J.H.4
  • 24
    • 34547293456 scopus 로고    scopus 로고
    • Electronic and transport properties of boron-doped graphene nanoribbons
    • DOI 10.1103/PhysRevLett.98.196803
    • T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.196803 98, 196803 (2007). (Pubitemid 47139493)
    • (2007) Physical Review Letters , vol.98 , Issue.19 , pp. 196803
    • Martins, T.B.1    Miwa, R.H.2    Da Silva, A.J.R.3    Fazzio, A.4
  • 25
    • 70349498811 scopus 로고    scopus 로고
    • APPLAB 0003-6951 10.1063/1.3231922
    • Q. Chen, L. Zhu, and J. Wang, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.3231922 95, 113116 (2009).
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 113116
    • Chen, Q.1    Zhu, L.2    Wang, J.3
  • 26
    • 77951706267 scopus 로고    scopus 로고
    • 1936-0851 10.1021/nn901552b
    • L. Kou, C. Li, Z. Zhang, and W. Guo, ACS Nano 1936-0851 10.1021/nn901552b 4, 2124 (2010).
    • (2010) ACS Nano , vol.4 , pp. 2124
    • Kou, L.1    Li, C.2    Zhang, Z.3    Guo, W.4
  • 28
    • 33744691386 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.45.566
    • D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.45.566 45, 566 (1980).
    • (1980) Phys. Rev. Lett. , vol.45 , pp. 566
    • Ceperley, D.M.1    Alder, B.J.2
  • 29
    • 80455170628 scopus 로고    scopus 로고
    • Within the siesta code, the cutoff radius of the basis set (pseudoatomic orbitals) can be tuned by a single parameter, energy shift. For lower energy shift we have larger cutoff radii for the atomic orbitals, that is, the basis set has been improved. In the present work, we have considered an energy shift of 0.10 eV to determine the radius cutoff of the pseudoatomic orbitals. Here we verify the convergence of our total energy results for an energy shift of 0.05 eV
    • Within the siesta code, the cutoff radius of the basis set (pseudoatomic orbitals) can be tuned by a single parameter, energy shift. For lower energy shift we have larger cutoff radii for the atomic orbitals, that is, the basis set has been improved. In the present work, we have considered an energy shift of 0.10 eV to determine the radius cutoff of the pseudoatomic orbitals. Here we verify the convergence of our total energy results for an energy shift of 0.05 eV.
  • 30
    • 33645426115 scopus 로고
    • PRBMDO 1098-0121 10.1103/PhysRevB.43.1993
    • N. Troullier and J. L. Martins, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.43.1993 43, 1993 (1991).
    • (1991) Phys. Rev. B , vol.43 , pp. 1993
    • Troullier, N.1    Martins, J.L.2
  • 31
    • 34447631717 scopus 로고    scopus 로고
    • PRBMDO 1098-0121 10.1103/PhysRevB.76.035322
    • C. Li, W. Guo, Y. Kong, and H. Gao, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.76.035322 76, 035322 (2007).
    • (2007) Phys. Rev. B , vol.76 , pp. 035322
    • Li, C.1    Guo, W.2    Kong, Y.3    Gao, H.4
  • 32
    • 34548177337 scopus 로고    scopus 로고
    • Wire versus tube: Stability of small one-dimensional ZnO nanostructures
    • DOI 10.1021/nl070788k
    • X. Shen, P. B. Allen, J. T. Muckerman, J. D. Davenport, and J.-C. Zheng, Nano Lett. NALEFD 1530-6984 10.1021/nl070788k 7, 2267 (2007). (Pubitemid 47310118)
    • (2007) Nano Letters , vol.7 , Issue.8 , pp. 2267-2271
    • Shen, X.1    Allen, P.B.2    Muckerman, J.T.3    Davenport, J.W.4    Zheng, J.-C.5
  • 33
    • 33846259723 scopus 로고    scopus 로고
    • Structural transformation of ZnO nanostructures
    • DOI 10.1063/1.2431073
    • L. Zhang and H. Huang, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2431073 90, 23115 (2007). (Pubitemid 46105610)
    • (2007) Applied Physics Letters , vol.90 , Issue.2 , pp. 023115
    • Zhang, L.1    Huang, H.2
  • 34
    • 34547184431 scopus 로고    scopus 로고
    • Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires
    • DOI 10.1063/1.2757147
    • H. Xu, A. L. Rosa, T. Frauenheim, R. Q. Zhang, and S. T. Lee, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.2757147 91, 031914 (2007). (Pubitemid 47120665)
    • (2007) Applied Physics Letters , vol.91 , Issue.3 , pp. 031914
    • Xu, Hu.1    Rosa, A.L.2    Frauenheim, Th.3    Zhang, R.Q.4    Lee, S.T.5
  • 35
    • 67649180422 scopus 로고    scopus 로고
    • NNOTER 0957-4484 10.1088/0957-4484/20/21/215202
    • T. M. Schmidt and R. H. Miwa, Nanotech. NNOTER 0957-4484 10.1088/0957-4484/20/21/215202 20, 215202 (2009).
    • (2009) Nanotech. , vol.20 , pp. 215202
    • Schmidt, T.M.1    Miwa, R.H.2
  • 36
    • 2442537377 scopus 로고    scopus 로고
    • PRBMDO 1098-0121 10.1103/PhysRevB.54.11169
    • G. Kresse and J. Furthmüller, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.54.11169 54, 11169 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 11169
    • Kresse, G.1    Furthmüller, J.2
  • 37
    • 25744460922 scopus 로고
    • PRBMDO 1098-0121 10.1103/PhysRevB.50.17953
    • P. E. Blöchl, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.50. 17953 50, 17953 (1994).
    • (1994) Phys. Rev. B , vol.50 , pp. 17953
    • Blöchl, P.E.1
  • 38
    • 80455149282 scopus 로고    scopus 로고
    • For the ZnO bulk phase, the energy band gap increases by 0.55 eV, 0.66 →1.17 eV, within the DFT+U calculation
    • For the ZnO bulk phase, the energy band gap increases by 0.55 eV, 0.66 →1.17 eV, within the DFT+U calculation.
  • 39
    • 77957697236 scopus 로고    scopus 로고
    • NNOTER 1943-2879 10.1103/Physics.3.53
    • A. Zunger, S. Lany, and H. Raebiger, Physics NNOTER 1943-2879 10.1103/Physics.3.53 3, 53 (2010).
    • (2010) Physics , vol.3 , pp. 53
    • Zunger, A.1    Lany, S.2    Raebiger, H.3
  • 41
    • 80455170629 scopus 로고    scopus 로고
    • Within the LSDA approach, we find metallic spin-down channels for the FM Co-doped ZnO nanoribbon, however, by inclusion of the Hubbard U for the Zn and Co 3d orbitals, DFT+U calculations, we verify that those partially occupied metallic states are suppressed
    • Within the LSDA approach, we find metallic spin-down channels for the FM Co-doped ZnO nanoribbon, however, by inclusion of the Hubbard U for the Zn and Co 3d orbitals, DFT+U calculations, we verify that those partially occupied metallic states are suppressed.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.