메뉴 건너뛰기




Volumn 49, Issue 11 PART 1, 2011, Pages 4123-4137

Component analysis-based unsupervised linear spectral mixture analysis for hyperspectral imagery

Author keywords

Component analysis (CA); inter band spectral information (IBSI); supervised linear spectral mixture analysis (SLSMA); unsupervised linear spectral mixture analysis (ULSMA); unsupervised virtual signature finding algorithm (UVSFA); virtual dimensionality (VD); virtual signature (VS)

Indexed keywords

COMPONENT ANALYSIS (CA); FINDING ALGORITHM; LINEAR SPECTRAL MIXTURE ANALYSIS; SPECTRAL INFORMATION; VIRTUAL DIMENSIONALITY; VIRTUAL SIGNATURE (VS);

EID: 80455174026     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2142419     Document Type: Article
Times cited : (42)

References (40)
  • 2
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C.-I Chang and Q. Du, Estimation of number of spectrally distinct signal sources in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 6
    • 77957947933 scopus 로고    scopus 로고
    • Target detection algorithm in hyperspectral imagery based on FastICA
    • M. Zheng, Z. Decai, and W. Zhang, Target detection algorithm in hyperspectral imagery based on FastICA, in Proc. 2nd ICACC, Mar. 27-29, 2010, pp. 579-582
    • (2010) Proc. 2nd ICACC, Mar , vol.27-29 , pp. 579-582
    • Zheng, M.1    Decai, Z.2    Zhang, W.3
  • 7
    • 18844373945 scopus 로고    scopus 로고
    • ICA-aided mixed-pixel analysis of hyperspectral data in agricultural land
    • DOI 10.1109/LGRS.2005.846439
    • N. Kosaka, K. Uto, and Y. Kosugi, ICA-aided mixed-pixel analysis of hyperspectral data in agricultural land, IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp. 220-224, Apr. 2005 (Pubitemid 40680179)
    • (2005) IEEE Geoscience and Remote Sensing Letters , vol.2 , Issue.2 , pp. 220-224
    • Kosaka, N.1    Uto, K.2    Kosugi, Y.3
  • 8
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • DOI 10.1109/TGRS.2004.839806
    • J. M. P. Nascimento and J. M. B. Dias, Does independent component analysis play a role in unmixing hyperspectral data? IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005 (Pubitemid 40162736)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 10
    • 33644508946 scopus 로고    scopus 로고
    • Estimation of signal subspace on hyperspectral data
    • Sep
    • J. M. P. Bioucas-Dias and J. Nascimento, Estimation of signal subspace on hyperspectral data, in Proc. SPIE, Bruges, Belgium, Sep. 2005, vol. 5982, pp. 191-198
    • (2005) Proc. SPIE, Bruges, Belgium , vol.5982 , pp. 191-198
    • Bioucas-Dias, J.M.P.1    Nascimento, J.2
  • 12
    • 78049257799 scopus 로고    scopus 로고
    • Linear spectral mixture analysis-based approaches to estimation of virtual dimensionality in hyperspectral imagery
    • Nov.
    • C.-I Chang, W. Xiong, W. Liu, C. C. Wu, and C. C. C. Chen, Linear spectral mixture analysis-based approaches to estimation of virtual dimensionality in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3960-3979, Nov. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.11 , pp. 3960-3979
    • Chang, C.-I.1    Xiong, W.2    Liu, W.3    Wu, C.C.4    Chen, C.C.C.5
  • 13
    • 33744719449 scopus 로고    scopus 로고
    • Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
    • DOI 10.1109/TGRS.2005.863297
    • J. Wang and C.-I Chang, Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1586-1600, Jun. 2006 (Pubitemid 43824505)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1586-1600
    • Wang, J.1    Chang, C.-I.2
  • 16
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • A. Hyvarinen and E. Oja, A fast fixed-point for independent component analysis, Neural Comput., vol. 9, no. 7, pp. 1483-1492, Oct. 1997 (Pubitemid 127462801)
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvarinen, A.1    Oja, E.2
  • 17
    • 0001070130 scopus 로고
    • Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis
    • Feb
    • M. O. Smith, P. E. Johnson, and J. B. Adams, Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis, J. Geophys. Res., vol. 90, pp. C797- C904, Feb. 1985
    • (1985) J. Geophys. Res , vol.90
    • Smith, M.O.1    Johnson, P.E.2    Adams, J.B.3
  • 18
    • 0029753233 scopus 로고    scopus 로고
    • A method for manual endmember selection and spectral unmixing
    • Mar
    • C. Bates and B. Curtis, A method for manual endmember selection and spectral unmixing, Remote Sens. Environ., vol. 55, no. 3, pp. 229-243, Mar. 1996
    • (1996) Remote Sens. Environ , vol.55 , Issue.3 , pp. 229-243
    • Bates, C.1    Curtis, B.2
  • 19
    • 0002081183 scopus 로고
    • Automated spectral unmixing of AVIRIS data using convex geometry concepts
    • Workshop, JPL Publication 93-26
    • J. W. Boardman, Automated spectral unmixing of AVIRIS data using convex geometry concepts, in Proc. Summaries, 4th JPL Airborne Geosci. Workshop, JPL Publication 93-26, 1993, vol. 1, pp. 11-14
    • (1993) Proc. Summaries, 4th JPL Airborne Geosci , vol.1 , pp. 11-14
    • Boardman, J.W.1
  • 20
    • 0028742731 scopus 로고
    • Geometric mixture analysis of imaging spectrometry data
    • J. W. Boardman, Geometric mixture analysis of imaging spectrometry data, in Proc. Int. Geosci. Remote Sens. Symp., 1994, vol. 4, pp. 2369-2371
    • (1994) Proc. Int. Geosci. Remote Sens. Symp , vol.4 , pp. 2369-2371
    • Boardman, J.W.1
  • 21
    • 0032156917 scopus 로고    scopus 로고
    • Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models
    • DOI 10.1016/S0034-4257(98)00037-6, PII S0034425798000376
    • D. A. Roberts, M. Gardner, R. Church, S. L. Ustin, G. Scheer, and R. O. Green, Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture model, Remote Sens. Environ., vol. 65, no. 3, pp. 267-279, Sep. 1998 (Pubitemid 29360703)
    • (1998) Remote Sensing of Environment , vol.65 , Issue.3 , pp. 267-279
    • Roberts, D.A.1    Gardner, M.2    Church, R.3    Ustin, S.4    Scheer, G.5    Green, R.O.6
  • 22
    • 0033890553 scopus 로고    scopus 로고
    • Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis
    • DOI 10.1109/36.841987
    • C. Bates, A. P. Asner, and C. A. Wessman, Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis, IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 1083- 1094, Mar. 2000 (Pubitemid 30594771)
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , Issue.2 , pp. 1083-1094
    • Ann Bateson, C.1    Asner, G.P.2    Wessman, C.A.3
  • 23
    • 2942522160 scopus 로고    scopus 로고
    • Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE
    • DOI 10.1016/S0034-4257(03)00135-4
    • P. E. Dennison and D. A. Roberts, Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE, Remote Sens. Environ., vol. 87, no. 2/3, pp. 123-135, Oct. 2003 (Pubitemid 39661164)
    • (2003) Remote Sensing of Environment , vol.87 , Issue.2-3 , pp. 123-135
    • Dennison, P.E.1    Roberts, D.A.2
  • 24
    • 0030615372 scopus 로고    scopus 로고
    • Optimization of targets for spectral mixture analysis
    • Mar
    • S. Tompkins, J. F. Mustarrd, C. M. Pieters, and D. W. Forsyth, Optimization of targets for spectral mixture analysis, Remote Sens. Environ., vol. 59, no. 3, pp. 472-489, Mar. 1997
    • (1997) Remote Sens. Environ , vol.59 , Issue.3 , pp. 472-489
    • Tompkins, S.1    Mustarrd, J.F.2    Pieters, C.M.3    Forsyth, D.W.4
  • 25
    • 42149186670 scopus 로고    scopus 로고
    • An optical real-tine adaptive spectral identification system
    • C.-I Chang, Ed. Hoboken, NJ: Wiley ch. 4
    • J. P Bowles and D. B. Gilles, An optical real-tine adaptive spectral identification system, in Hyperspectral Data Exploitation, C.-I Chang, Ed. Hoboken, NJ: Wiley, 2007, ch. 4, pp. 77-106
    • (2007) Hyperspectral Data Exploitation , pp. 77-106
    • Bowles, J.P.1    Gilles, D.B.2
  • 26
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. D. Craig, Minimum-volume transforms for remotely sensed data, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 27
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral endmember determination in hyperspectral data
    • Vancouver, BC, Canada
    • M. E. Winter, Fast autonomous spectral endmember determination in hyperspectral data, in Proc. 13th Int. Conf. Appl. Geologic Remote Sens., Vancouver, BC, Canada, 1999, vol. II, pp. 337-344
    • (1999) Proc. 13th Int. Conf. Appl. Geologic Remote Sens. , vol.2 , pp. 337-344
    • Winter, M.E.1
  • 28
    • 0033310314 scopus 로고    scopus 로고
    • N-finder: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, N-finder: An algorithm for fast autonomous spectral endmember determination in hyperspectral data, in Proc. SPIE Image Spectrometry V,1999, vol. 3753, pp. 266-277
    • (1999) Proc. SPIE Image Spectrometry v , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 29
    • 0034432355 scopus 로고    scopus 로고
    • Comparison of approaches for determining end-members in hyperspectral data
    • M. E. Winter and E. Winter, Comparison of approaches for determining endmember in hyperspectral data, in Proc. IEEE Int. Aerosp Conf., 2000, pp. 305-313 (Pubitemid 32838220)
    • (2000) IEEE Aerospace Conference Proceedings , vol.3 , pp. 305-313
    • Winter, M.E.1    Winter, E.M.2
  • 30
    • 10444251827 scopus 로고    scopus 로고
    • A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image
    • Apr
    • M. E. Winter, A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image, in Proc. SPIE, Apr. 2004, vol. 5425, pp. 31-41
    • (2004) Proc. SPIE , vol.5425 , pp. 31-41
    • Winter, M.E.1
  • 31
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Oct
    • I. S. Reed and X. Yu, Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Trans. Acoust., Speech, Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990
    • (1990) IEEE Trans. Acoust., Speech, Signal Process , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 32
  • 33
    • 77952595305 scopus 로고    scopus 로고
    • Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical bayesian algorithm
    • Jun.
    • O. Eches, N. Dobigeon, and J.-Y. Tourneret, Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical bayesian algorithm, IEEE J. Sel. Topics Signal Process., vol. 4, no. 3, pp. 582-591, Jun. 2010
    • (2010) IEEE J. Sel. Topics Signal Process , vol.4 , Issue.3 , pp. 582-591
    • Eches, O.1    Dobigeon, N.2    Tourneret, J.-Y.3
  • 35
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection in hyperspeetral imagery
    • DOI 10.1109/LGRS.2007.895727
    • A. Zare and P. Gader, Sparsity promoting iterated constrained endmember detection in hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, Jul. 2007 (Pubitemid 47117457)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 36
    • 77951276008 scopus 로고    scopus 로고
    • A Neyman-Pearson approach to estimating the number of endmembers
    • Jul. 12-17
    • J. Broadwater and A. Banerjee, A Neyman-Pearson approach to estimating the number of endmembers, in Proc. IEEE IGARSS, Jul. 12-17, 2009, pp. IV-693-IV-696
    • (2009) Proc. IEEE IGARSS
    • Broadwater, J.1    Banerjee, A.2
  • 37
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Jul
    • J. C. Harsanyi and C.-I Chang, Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 38
    • 0030186112 scopus 로고    scopus 로고
    • Reliably estimating the noise in AVIRIS hyperspectral imagers
    • Jul
    • R. E. Roger and J. F. Arnold, Reliably estimating the noise in AVIRIS hyperspectral imagers, Int. J. Remote Sens., vol. 17, no. 10, pp. 1951- 1962, Jul. 1996
    • (1996) Int. J. Remote Sens , vol.17 , Issue.10 , pp. 1951-1962
    • Roger, R.E.1    Arnold, J.F.2
  • 39
    • 0023854011 scopus 로고
    • Transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • DOI 10.1109/36.3001
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988 (Pubitemid 18596008)
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.