메뉴 건너뛰기




Volumn 106, Issue , 2011, Pages 19-25

Analyses on influence of training data set to neural network supervised learning performance

Author keywords

Neural network; supervised learning performance; training data set

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DATA PREPROCESSING; HIGH QUALITY; IMPROVING PERFORMANCE; LEARNING PERFORMANCE; SUPERVISED LEARNING PERFORMANCE; TRAINING DATA; TRAINING DATA SETS;

EID: 80455149972     PISSN: 18675662     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-23753-9_4     Document Type: Conference Paper
Times cited : (22)

References (17)
  • 1
    • 80455164423 scopus 로고    scopus 로고
    • Optimal selection of training data for the difference boosting neural networks
    • Nice, France, October 16-17
    • Philip, N.S.: Optimal selection of training data for the difference boosting neural networks. In: Proc. of iAstro, Nice, France, October 16-17, pp. 1-9 (2003)
    • (2003) Proc. of IAstro , pp. 1-9
    • Philip, N.S.1
  • 2
    • 28844445980 scopus 로고    scopus 로고
    • Influence of different training samples to recognition system
    • Liu, G., Zhang, H.G., Guo, J.: The influence of different training samples to recognition system. Chinese Journal of Computers 28(11), 1923-1928 (2005) (Pubitemid 41760031)
    • (2005) Jisuanji Xuebao/Chinese Journal of Computers , vol.28 , Issue.11 , pp. 1923-1928
    • Liu, G.1    Zhang, H.-G.2    Guo, J.3
  • 3
    • 33745456231 scopus 로고    scopus 로고
    • Technical report 1530, Computer Science University of Wisconsin Madiso
    • Zhu, X.J.: Semi-supervised learning literature survey, Technical report 1530, Computer Science. University of Wisconsin Madiso (2008)
    • (2008) Semi-supervised Learning Literature Survey
    • Zhu, X.J.1
  • 5
    • 0039499551 scopus 로고    scopus 로고
    • Training data selection for optimal generalization with noise variance reduction in neural networks
    • Salerno, Italy
    • Vijayakumar, S., Sugiyama, M., Ogawa, H.: Training Data Selection for Optimal Generalization with Noise Variance Reduction in Neural Networks. In: Processings of Neural Nets WIRN Vietri-1998, Salerno, Italy, pp. 153-166 (1998)
    • (1998) Processings of Neural Nets WIRN Vietri-1998 , pp. 153-166
    • Vijayakumar, S.1    Sugiyama, M.2    Ogawa, H.3
  • 6
    • 0033640737 scopus 로고    scopus 로고
    • Statistical active learning in multilayer perceptrons
    • DOI 10.1109/72.822506
    • Fukumizu, K.: Stastical active learning in multilayer perceptrons. IEEE Transactions on Neural Networks 11(1), 17-26 (2000) (Pubitemid 32132884)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.1 , pp. 17-26
    • Fukumizu, K.1
  • 8
    • 1842451627 scopus 로고    scopus 로고
    • Study and application of BP neural network model based on fuzzy clustering
    • He, Y., Xiang, L.G.: Study and application of BP neural network model based on fuzzy clustering. Systems Engineering-Theory and Practice (2), 79-82 (2004)
    • (2004) Systems Engineering-Theory and Practice , vol.2 , pp. 79-82
    • He, Y.1    Xiang, L.G.2
  • 9
    • 38049107867 scopus 로고    scopus 로고
    • Training sample selection method for neural networks based on nearest neighbor rule
    • Hao, H.W., Jiang, R.R.: Training sample selection method for neural networks based on nearest neighbor rule. Acta Automatica Sinica 33(12), 1247-1251 (2007)
    • (2007) Acta Automatica Sinica , vol.33 , Issue.12 , pp. 1247-1251
    • Hao, H.W.1    Jiang, R.R.2
  • 14
    • 55349136231 scopus 로고    scopus 로고
    • Improving supervised learning performance by using fuzzy clustering method to select training data
    • Guan, D., Yuan, W., Lee, Y.-K., Gavrilov, A., Lee, S.: Improving supervised learning performance by using fuzzy clustering method to select training data. Journal of Intelligent & Fuzzy Systems 19(4), 321-334 (2008)
    • (2008) Journal of Intelligent & Fuzzy Systems , vol.19 , Issue.4 , pp. 321-334
    • Guan, D.1    Yuan, W.2    Lee, Y.-K.3    Gavrilov, A.4    Lee, S.5
  • 16
    • 80455159893 scopus 로고    scopus 로고
    • Algorithm of voting to eliminate morbid samples in forward feed neural networks
    • Ai, J.J., Zhou, C.G., Gong, C.C.: Algorithm of voting to eliminate morbid samples in forward feed neural networks. Mini-Micro System 11(11), 1371-1374 (2002)
    • (2002) Mini-Micro System , vol.11 , Issue.11 , pp. 1371-1374
    • Ai, J.J.1    Zhou, C.G.2    Gong, C.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.