메뉴 건너뛰기




Volumn 19, Issue 4-5, 2008, Pages 321-334

Improving supervised learning performance by using fuzzy clustering method to select training data

Author keywords

Border based selection; Center based selection; Classification; Data selection; Fuzzy clustering; Hybrid selection

Indexed keywords

DATA REDUCTION; FLOW OF SOLIDS; FUZZY SETS; FUZZY SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; SUPERVISED LEARNING;

EID: 55349136231     PISSN: 10641246     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (36)
  • 2
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Technical report 1530, Computer Science, University of Wisconsin-Madiso
    • X.J. Zhu, Semi-supervised learning literature survey, Technical report 1530, Computer Science, University of Wisconsin-Madiso, 2006.
    • (2006)
    • Zhu, X.J.1
  • 4
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. Mackay, Information-based objective functions for active data selection, Neural Computation 4(4) (1992), 305-318.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 305-318
    • Mackay, D.1
  • 7
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • B.M. Shahshahani and D.A. Landgrebe, The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon, IEEE Transaction on Geoscience and Remote Sensing 32(5) (1994), 1087-1095.
    • (1994) IEEE Transaction on Geoscience and Remote Sensing , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 8
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labeled and unlabelled data
    • D.J. Miller and H.S. Uyar, A mixture of experts classifier with learning based on both labeled and unlabelled data, Advances in Neural Information Processing Systems (1997), 571-577.
    • (1997) Advances in Neural Information Processing Systems , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 10
    • 0033640737 scopus 로고    scopus 로고
    • Stastical active learning in multilayer perceptrons
    • K. Fukumizu, Stastical active learning in multilayer perceptrons, IEEE Transactions on Neural Networks 11(1) (2000), 17-26.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.1 , pp. 17-26
    • Fukumizu, K.1
  • 12
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with application to text classification
    • S. Tong and D. Koller, Support vector machine active learning with application to text classification, Journal of Machine Learning Research 2 (2001), 45-66.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 18
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas and R. Ladner, Improving generalization with active learning, Machine Learning Journal 15 (1994), 210-221.
    • (1994) Machine Learning Journal , vol.15 , pp. 210-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 32
    • 49349133217 scopus 로고
    • Fuzzy sets as a basis for a theory of possibility
    • L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1(1) (1978), 3-28.
    • (1978) Fuzzy Sets and Systems , vol.1 , Issue.1 , pp. 3-28
    • Zadeh, L.A.1
  • 33
    • 55349149110 scopus 로고    scopus 로고
    • Yashil, Fuzzy C-Means Clustering MATLAB Toolbox, http://ce.sharif.edu/ ~m_amiri/project/yfcmc/index.htm.
    • Yashil, Fuzzy C-Means Clustering MATLAB Toolbox, http://ce.sharif.edu/ ~m_amiri/project/yfcmc/index.htm.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.