메뉴 건너뛰기




Volumn 47, Issue 10, 2011, Pages

State estimation and modeling error approach for 2-D shallow water equations and Lagrangian measurements

Author keywords

[No Author keywords available]

Indexed keywords

CALIFORNIA; COMPUTATIONAL MODEL; ENSEMBLE KALMAN FILTERING; EVOLUTION MODELS; EXPERIMENTAL DATA; LAGRANGIAN DRIFTERS; LAGRANGIAN MEASUREMENTS; LOCAL FLOWS; MEASUREMENT INFORMATION; MODELING ERRORS; RIVER FLOW; SACRAMENTO-SAN JOAQUIN DELTA; SHALLOW WATER EQUATIONS; STATE ESTIMATION METHODS; TWO-DIMENSIONAL SHALLOW WATER EQUATIONS;

EID: 80054999122     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2010WR009401     Document Type: Article
Times cited : (13)

References (53)
  • 2
    • 0024915102 scopus 로고
    • Guide for selecting mannings roughness coefficients for natural channels and flood plains
    • United States Geol. Surv
    • Arcement, G. J., and V. Schneider (1989), Guide for selecting mannings roughness coefficients for natural channels and flood plains, Water Supply Pap. 2339, United States Geol. Surv.
    • (1989) Water Supply Pap. , pp. 2339
    • Arcement, G.J.1    Schneider, V.2
  • 3
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., P. van Leeuwen, and G. Evensen (1998), Analysis scheme in the ensemble Kalman filter, Mon. Wea. Rev., 126, 1719-1724. (Pubitemid 128597660)
    • (1998) Monthly Weather Review , vol.126 , Issue.6 , pp. 1719-1724
    • Burgers, G.1    Van Leeuwen, P.J.2    Evensen, G.3
  • 4
    • 51349114551 scopus 로고    scopus 로고
    • Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model
    • doi:10.1016/j.advwatres.2008.06.005
    • Clark, M., D. Rupp, R. Woods, X. Zheng, R. Ibbitt, A. Slater, J. Schmidt, and M. Uddstrom (2008), Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309-1324, doi:10.1016/j.advwatres. 2008.06.005.
    • (2008) Adv. Water Resour. , vol.31 , pp. 1309-1324
    • Clark, M.1    Rupp, D.2    Woods, R.3    Zheng, X.4    Ibbitt, R.5    Slater, A.6    Schmidt, J.7    Uddstrom, M.8
  • 5
    • 74249094921 scopus 로고    scopus 로고
    • Flow relevant covariance localization during dynamic data assimilation using EnKF
    • doi:10.1016/j.advwatres.2009.10.001
    • Devegowda, D., E. Arroyo-Negrete, and A. Datta-Gupta (2010), Flow relevant covariance localization during dynamic data assimilation using EnKF, Adv.Water Resour., 33, 129-145, doi:10.1016/j.advwatres.2009.10.001.
    • (2010) Adv.Water Resour. , vol.33 , pp. 129-145
    • Devegowda, D.1    Arroyo-Negrete, E.2    Datta-Gupta, A.3
  • 6
    • 0026067446 scopus 로고
    • Lowdimensional models for complex geometry flows: Application to grooved channels and circular cylinders
    • doi:10.1063/1.857881
    • Deane, A., I. Kevrekidis, G. Karniadakis, and S. Orszag (1991), Lowdimensional models for complex geometry flows: Application to grooved channels and circular cylinders, Phys. Fluids A, 3, 2337-2354, doi:10.1063/1.857881.
    • (1991) Phys. Fluids A , vol.3 , pp. 2337-2354
    • Deane, A.1    Kevrekidis, I.2    Karniadakis, G.3    Orszag, S.4
  • 8
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophic model using Monte-Carlo methods to forecast error statistics
    • 162, doi:10.1029/94JC00572
    • Evensen, G. (1994), Sequential data assimilation with a nonlinear quasigeostrophic model using Monte-Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10,143-10,162, doi:10.1029/94JC00572.
    • (1994) J. Geophys. Res. , vol.99 , Issue.10 , pp. 143-110
    • Evensen, G.1
  • 9
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • doi:10.1007/s10236-003-0036-9
    • Evensen, G. (2003), The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dyn., 53, 343-367, doi:10.1007/s10236-003- 0036-9.
    • (2003) Ocean Dyn. , vol.53 , Issue.343-367
    • Evensen, G.1
  • 11
    • 2642551751 scopus 로고    scopus 로고
    • Assimilation of drifter and satellite data in a model of the Northeastern Gulf of Mexico
    • DOI 10.1016/j.csr.2004.02.013, PII S0278434304000524
    • Fan, S., L.-Y. Oey, and P. Hamilton (2004), Assimilation of drifter and satellite data in a model of the Northeastern Gulf of Mexico, Cont. Shelf Res., 24, 1001-1013. (Pubitemid 38722346)
    • (2004) Continental Shelf Research , vol.24 , Issue.9 , pp. 1001-1013
    • Fan, S.1    Oey, L.-Y.2    Hamilton, P.3
  • 12
    • 55249106218 scopus 로고    scopus 로고
    • Real-time groundwater flow modeling with Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem
    • doi:10.1029/2007WR006505
    • Franssen, H. H., and W. Kinzelbach (2008), Real-time groundwater flow modeling with Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem, Water Resour. Res., 44, W09408, doi:10.1029/2007WR006505.
    • (2008) Water Resour. Res. , vol.44
    • Franssen, H.H.1    Kinzelbach, W.2
  • 13
    • 68749116583 scopus 로고    scopus 로고
    • Fast data assimilation using a nonlinear Kalman filter and a model surrogate: An application to the Columbia River estuary
    • doi:10.1016/j.dynatmoce.2008.10.004
    • Frolov, S., A. Baptista, T. Leen, Z. Lu, and R. van der Merwe (2009), Fast data assimilation using a nonlinear Kalman filter and a model surrogate: An application to the Columbia River estuary, Dyn. Atmos. Oceans, 48, 16-45, doi:10.1016/j.dynatmoce.2008.10.004.
    • (2009) Dyn. Atmos. Oceans , vol.48 , pp. 16-45
    • Frolov, S.1    Baptista, A.2    Leen, T.3    Lu, Z.4    Merwe Der R.Van5
  • 14
    • 57749093583 scopus 로고    scopus 로고
    • Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution
    • Ganju, N., and D. Schoellhamer (2009), Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution, Cont. Shelf Res., 29, 148-158.
    • (2009) Cont. Shelf Res. , vol.29 , pp. 148-158
    • Ganju, N.1    Schoellhamer, D.2
  • 15
    • 84861530033 scopus 로고    scopus 로고
    • Data assimilation in a combined 1d-2d flood model using the ensemble Kalman filter
    • Shanghai
    • Hartnack, J., H. Madsen, and J. Sørensen (2006), Data assimilation in a combined 1d-2d flood model using the ensemble Kalman filter, in 4th Asia-Pacific DHI Software Conf., Shanghai.
    • (2006) 4th Asia-Pacific DHI Software Conf.
    • Hartnack, J.1    Madsen, H.2    Sørensen, J.3
  • 16
    • 0027430540 scopus 로고
    • Tidally averaged models for dispersion in shallow water
    • DOI 10.1029/92WR02421
    • Heemink, A. (1993), Tidally averaged models for dispersion in shallow water, Water Resour. Res., 29, 607-617, doi:10.1029/92WR02421. (Pubitemid 23382718)
    • (1993) Water Resources Research , vol.29 , Issue.3 , pp. 607-617
    • Heemink, A.W.1
  • 17
    • 0035391382 scopus 로고    scopus 로고
    • Variance reduced ensemble Kalman filtering
    • Heemink, A., M. Verlaan, and A. Segers (2001), Variance reduced ensemble Kalman filtering, Mon. Wea. Rev., 129, 1718-1728. (Pubitemid 32731700)
    • (2001) Monthly Weather Review , vol.129 , Issue.7 , pp. 1718-1728
    • Heemink, A.W.1    Verlaan, M.2    Segers, A.J.3
  • 18
    • 62949208895 scopus 로고    scopus 로고
    • Lagrangian data assimilation for river hydraulics simulations
    • ECCOMAS CFD, Egmond en Zee, Netherlands
    • Honnorat, M., J. Monnier, and F.-X. L. Dimet (2006), Lagrangian data assimilation for river hydraulics simulations, in European Conf. Computational Fluid Dynamics, ECCOMAS CFD, Egmond en Zee, Netherlands.
    • (2006) European Conf. Computational Fluid Dynamics
    • Honnorat, M.1    Monnier, J.2    Dimet, F.-X.L.3
  • 19
    • 64849085468 scopus 로고    scopus 로고
    • Lagrangian data assimilation for river hydraulics simulations
    • doi:10.1007/s00791-008-0089-x
    • Honnorat, M., J. Monnier, and F.-X. L. Dimet (2009), Lagrangian data assimilation for river hydraulics simulations, Comput. Visualization Sci., 12, 235-246, doi:10.1007/s00791-008-0089-x.
    • (2009) Comput. Visualization Sci. , vol.12 , pp. 235-246
    • Honnorat, M.1    Monnier, J.2    Dimet, F.-X.L.3
  • 20
    • 38849099711 scopus 로고    scopus 로고
    • Approximation errors in nonstationary inverse problems
    • Huttunen, J., and J. Kaipio (2007a), Approximation errors in nonstationary inverse problems, IPI, 1(1), 77-93.
    • (2007) IPI , vol.1 , Issue.1 , pp. 77-93
    • Huttunen, J.1    Kaipio, J.2
  • 21
    • 38849157856 scopus 로고    scopus 로고
    • Approximation error analysis in nonlinear state estimation with an application to state-space identification
    • DOI 10.1088/0266-5611/23/5/019, PII S0266561107461949
    • Huttunen, J., and J. Kaipio (2007b), Approximation error analysis in nonlinear state estimation with an application to state-space identification, Inverse Problems, 23, 2141-2157. (Pubitemid 351453862)
    • (2007) Inverse Problems , vol.23 , Issue.5 , pp. 2141-2157
    • Huttunen, J.M.J.1    Kaipio, J.P.2
  • 22
    • 61549128653 scopus 로고    scopus 로고
    • Model reduction in state indentification problems with an application to determination of thermal parameters
    • Huttunen, J., and J. Kaipio (2009), Model reduction in state indentification problems with an application to determination of thermal parameters, Appl. Numer. Math., 59, 877-890.
    • (2009) Appl. Numer. Math. , vol.59 , pp. 877-890
    • Huttunen, J.1    Kaipio, J.2
  • 23
    • 78649798601 scopus 로고    scopus 로고
    • Importance filtering approach for the nonstationary approximation error method
    • doi:10.1088/0266-5611/26/12/125003
    • Huttunen, J., A. Lehikoinen, J. Hämäläinen, and J. Kaipio (2010), Importance filtering approach for the nonstationary approximation error method, Inverse Problems, 26, doi:10.1088/0266-5611/26/12/125003.
    • (2010) Inverse Problems , vol.26
    • Huttunen, J.1    Lehikoinen, A.2    Hämäläinen, J.3    Kaipio, J.4
  • 24
    • 34248656285 scopus 로고    scopus 로고
    • Lagrangian data assimilation for point vortex systems
    • doi:10.1088/1468-5248/3/053
    • Ide, K., L. Kuznetsov, and C. Jones (2002), Lagrangian data assimilation for point vortex systems, Journal of Turbulence, 3(053), doi:10.1088/1468-5248/ 3/053.
    • (2002) Journal of Turbulence , vol.3 , pp. 053
    • Ide, K.1    Kuznetsov, L.2    Jones, C.3
  • 26
    • 33748749612 scopus 로고    scopus 로고
    • Statistical inverse problems: Discretization, model reduction and inverse crimes
    • DOI 10.1016/j.cam.2005.09.027, PII S0377042705007296
    • Kaipio, J., and E. Somersalo (2007), Statistical inverse problems: Discretization, model reduction and inverse crimes, J. Comput. Appl. Math., 198(2), 493-504. (Pubitemid 44402950)
    • (2007) Journal of Computational and Applied Mathematics , vol.198 , Issue.2 , pp. 493-504
    • Kaipio, J.1    Somersalo, E.2
  • 27
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Series D
    • Kalman, R. (1960), A new approach to linear filtering and prediction problems, J. Basic Eng., 82(Series D), 35-45.
    • (1960) J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.1
  • 29
    • 0007312235 scopus 로고    scopus 로고
    • Predicting the output from a complex computer code when fast approximations are available
    • Kennedy, M., and A. OHagan (2000), Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87, 1-13.
    • (2000) Biometrika , vol.87 , pp. 1-13
    • Kennedy, M.1    Ohagan, A.2
  • 30
    • 80054978180 scopus 로고    scopus 로고
    • Marginalization of uninteresting distributed parameters in inverse problems-Application to diffuse optical tomography
    • Kolehmainen, V., T. Tarvainen, S. Arridge, and J. Kaipio (2011), Marginalization of uninteresting distributed parameters in inverse problems-Application to diffuse optical tomography, Int. J. Uncertainty Quant., 1, 1-17.
    • (2011) Int. J. Uncertainty Quant. , vol.1 , pp. 1-17
    • Kolehmainen, V.1    Tarvainen, T.2    Arridge, S.3    Kaipio, J.4
  • 31
    • 0242583139 scopus 로고    scopus 로고
    • A method for assimilation of Lagrangian data
    • DOI 10.1175/15 20-0493(200 3)131<2247:AM FAOL>2.0.CO;2
    • Kuznetsov, L., K. Ide, and C. Jones (2003), A method for assimilation of Lagrangian data, Mon. Wea. Rev., 131, 2247-2260. (Pubitemid 37400419)
    • (2003) Monthly Weather Review , vol.131 , Issue.10 , pp. 2247-2260
    • Kuznetsov, L.1    Ide, K.2    Jones, C.K.R.T.3
  • 32
    • 0027341456 scopus 로고
    • Solution of the shallow water equations by least squares collocation
    • doi:10.1029/92WR01903
    • Laible, J., and G. Pinder (1993), Solution of the shallow water equations by least squares collocation, Water Resour. Res., 29, 445-455, doi:10.1029/92WR01903.
    • (1993) Water Resour. Res. , vol.29 , pp. 445-455
    • Laible, J.1    Pinder, G.2
  • 33
    • 80054972011 scopus 로고    scopus 로고
    • Dynamic inversion for hydrological process monitoring with electrical resistance tomography under model uncertainties
    • doi:10.1029/2009WR008470
    • Lehikoinen, A., J. Huttunen, S. Finsterle, M. Kowalsky, and J. Kaipio (2010), Dynamic inversion for hydrological process monitoring with electrical resistance tomography under model uncertainties, Water Resour. Res., 46, W04513, doi:10.1029/2009WR008470.
    • (2010) Water Resour. Res. , vol.46
    • Lehikoinen, A.1    Huttunen, J.2    Finsterle, S.3    Kowalsky, M.4    Kaipio, J.5
  • 34
    • 77953522113 scopus 로고    scopus 로고
    • Sensitivity of plankton biomass and productivity to variations in physical forcing and biological parameters in Chesapeake Bay
    • Li, M., L. Zhong, and L. Harding (2009), Sensitivity of plankton biomass and productivity to variations in physical forcing and biological parameters in Chesapeake Bay, J. Marine Res., 67, 667-700.
    • (2009) J. Marine Res. , vol.67 , pp. 667-700
    • Li, M.1    Zhong, L.2    Harding, L.3
  • 35
    • 77957033020 scopus 로고    scopus 로고
    • Reduced-order estimation of nonstationary flows with electrical impedance tomography
    • doi:10.1088/0266-5611/26/7/074010
    • Lipponen, A., A. Seppänen, and J. Kaipio (2010), Reduced-order estimation of nonstationary flows with electrical impedance tomography, Inverse Problems, 26(074010), doi:10.1088/0266-5611/26/7/074010.
    • (2010) Inverse Problems , vol.26 , pp. 074010
    • Lipponen, A.1    Seppänen, A.2    Kaipio, J.3
  • 36
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
    • DOI 10.1029/2004WR003604, W05012
    • Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian (2005), Uncertainty assessment of hydrologic model states and parameters : Sequential data assimilation using the particle filter, Water Resour. Res., 42, W05012, doi:10.1029/2004WR003604. (Pubitemid 40856462)
    • (2005) Water Resources Research , vol.41 , Issue.5 , pp. 1-17
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.3    Sorooshian, S.4
  • 37
    • 31844456785 scopus 로고    scopus 로고
    • Variational assimilation of Lagrangian data in oceanography
    • DOI 10.1088/0266-5611/22/1/014
    • Nodet, M. (2006), Variational assimilation of Lagrangian data in oceanography, Inverse Problems, 22, 245-263. (Pubitemid 43185100)
    • (2006) Inverse Problems , vol.22 , Issue.1 , pp. 245-263
    • Nodet, M.1
  • 38
    • 58349104594 scopus 로고    scopus 로고
    • Estimation of river current using reduced Kalman filter finite element method
    • Ojima, Y., and M. Kawahara (2009), Estimation of river current using reduced Kalman filter finite element method, Comput. Methods Appl. Mech. Eng., 198, 904-911.
    • (2009) Comput. Methods Appl. Mech. Eng. , vol.198 , pp. 904-911
    • Ojima, Y.1    Kawahara, M.2
  • 40
    • 0141994470 scopus 로고    scopus 로고
    • Assimilation of drifter observations in primitive equation models of midlatitude ocean circulation
    • doi:10.1029/ 2002JC001719
    • Özgökmen, T., A. Molcard, T. Chin, L. Piterbarg, and A. Griffa (2003), Assimilation of drifter observations in primitive equation models of midlatitude ocean circulation, J. Geophys. Res., 108(C7), 3238, doi:10.1029/ 2002JC001719.
    • (2003) J. Geophys. Res. , vol.108 , Issue.7 , pp. 3238
    • Özgökmen, T.1
  • 41
    • 0036322061 scopus 로고    scopus 로고
    • Hydrologic data assimilation with the ensemble Kalman filter
    • Reichle, R., D.McLaughlin, and D. Entekhabi (2002), Hydrologic data assimilation with the ensemble Kalman filter, Mon. Wea. Rev., 130, 103-114. (Pubitemid 34838242)
    • (2002) Monthly Weather Review , vol.130 , Issue.1 , pp. 103-114
    • Reichle, R.H.1    McLaughlin, D.B.2    Entekhabi, D.3
  • 42
    • 33746624237 scopus 로고    scopus 로고
    • Data assimilation and adaptive forecasting of water levels in the river Severn catchment, United Kingdom
    • DOI 10.1029/2005WR004373
    • Romanowicz, R., P. Young, and K. Beven (2006), Data assimilation and adaptive forecasting of water levels in the River Severn catchment, United Kingdom, Water Resour. Res., 42,W06407, doi:10.1029/2005WR004373. (Pubitemid 44156556)
    • (2006) Water Resources Research , vol.42 , Issue.6
    • Romanowicz, R.J.1    Young, P.C.2    Beven, K.J.3
  • 43
    • 33646460771 scopus 로고    scopus 로고
    • A method for assimilating Lagrangian data into a shallow-water-equation ocean model
    • Salman, H., L. Kuznetsov, and C. Jones (2006), A method for assimilating Lagrangian data into a shallow-water-equation ocean model, Mon. Wea. Rev., 134, 1081-1101.
    • (2006) Mon. Wea. Rev. , vol.134 , pp. 1081-1101
    • Salman, H.1    Kuznetsov, L.2    Jones, C.3
  • 44
    • 77955924026 scopus 로고    scopus 로고
    • Wind modulation of dissolved oxygen in Chesapeake Bay
    • Scully, M. (2010), Wind modulation of dissolved oxygen in Chesapeake Bay, Estuaries Coasts, 33, 1164-1175.
    • (2010) Estuaries Coasts , vol.33 , pp. 1164-1175
    • Scully, M.1
  • 45
    • 67649973230 scopus 로고    scopus 로고
    • Comparison of two data assimilation algorithms for shallow water flows
    • doi:10.3934/nhm.2009.4.409
    • Strub, I., J. Percelay, O.-P. Tossavainen, and A. Bayen (2009), Comparison of two data assimilation algorithms for shallow water flows, Networks Heterogeneous Media, 4, 409-430, doi:10.3934/nhm.2009.4.409.
    • (2009) Networks Heterogeneous Media , vol.4 , pp. 409-430
    • Strub, I.1    Percelay, J.2    Tossavainen, O.-P.3    Bayen, A.4
  • 46
    • 62949189793 scopus 로고    scopus 로고
    • Ensemble Kalman filter based state estimation in 2D shallow water equations using Lagrangian sensing and state augmentation
    • Cancun, Mexico
    • Tossavainen, O.-P., J. Percelay, A. Tinka, Q. Wu, and A. Bayen (2008), Ensemble Kalman filter based state estimation in 2D shallow water equations using Lagrangian sensing and state augmentation, in Proc. 47th IEEE Conf. on Decision and Control, Cancun, Mexico, pp. 1783-1790.
    • (2008) Proc. 47th IEEE Conf. on Decision and Control , pp. 1783-1790
    • Tossavainen, O.-P.1    Percelay, J.2    Tinka, A.3    Wu, Q.4    Bayen, A.5
  • 48
    • 33847624077 scopus 로고    scopus 로고
    • Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging
    • DOI 10.1029/2005WR004838
    • Vrugt, J., and B. Robinson (2007), Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging, Water Resour. Res., 43,W01411, doi:10.1029/2005WR004838. (Pubitemid 46364289)
    • (2007) Water Resources Research , vol.43 , Issue.1
    • Vrugt, J.A.1    Robinson, B.A.2
  • 49
    • 72149099854 scopus 로고    scopus 로고
    • State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
    • doi:10.1029/2008WR007401
    • Wang, D., Y. Chen, and X. Cai (2009), State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter, Water Resour. Res., 45, W11416, doi:10.1029/2008WR007401.
    • (2009) Water Resour. Res. , vol.45
    • Wang, D.1    Chen, Y.2    Cai, X.3
  • 50
    • 33750368306 scopus 로고    scopus 로고
    • Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models
    • DOI 10.1029/2005WR004093
    • Weerts, A., and G. El Serafy (2006), Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models, Water Resour. Res., 42, W09403, doi:10.1029/2005WR004093. (Pubitemid 44619764)
    • (2006) Water Resources Research , vol.42 , Issue.9
    • Weerts, A.H.1    El Serafy, G.Y.H.2
  • 52
    • 63549115443 scopus 로고    scopus 로고
    • Data reconciliation of an open channel flow network using a modal decomposition
    • doi:10.1016/j.advwatres.2008.10.009
    • Wu, Q., X. Litrico, and A. Bayen (2009), Data reconciliation of an open channel flow network using a modal decomposition, Adv. Water Resour., 32, 193-204, doi:10.1016/j.advwatres.2008.10.009.
    • (2009) Adv. Water Resour. , vol.32 , pp. 193-204
    • Wu, Q.1    Litrico, X.2    Bayen, A.3
  • 53
    • 77953120926 scopus 로고    scopus 로고
    • Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter
    • doi:10.1016/j.advwatres.2010.03.012
    • Xie, X., and D. Zhang (2010), Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter, Adv. Water Resour., 33, 678-690, doi:10.1016/j.advwatres.2010.03.012.
    • (2010) Adv. Water Resour. , vol.33 , pp. 678-690
    • Xie, X.1    Zhang, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.