메뉴 건너뛰기




Volumn 51, Issue 10, 2011, Pages 2697-2705

Development of a Minimal Kinase Ensemble Receptor (MKER) for Surrogate Autoshim

Author keywords

[No Author keywords available]

Indexed keywords

CRYSTAL STRUCTURE; DIGITAL LIBRARIES;

EID: 80054959376     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci200234p     Document Type: Article
Times cited : (3)

References (28)
  • 1
    • 44449170478 scopus 로고    scopus 로고
    • Surrogate AutoShim: Predocking into a universal ensemble kinase receptor for three dimensional activity prediction, very quickly, without a crystal structure
    • DOI 10.1021/ci700455u
    • Martin, E. J.; Sullivan, D. C. Surrogate AutoShim: Predocking into a Universal Ensemble Kinase Receptor for Three Dimensional Activity Prediction, Very Quickly, without a Crystal Structure J. Chem. Inf. Model. 2008, 48, 873-881 (Pubitemid 351757752)
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.4 , pp. 873-881
    • Martin, E.J.1    Sullivan, D.C.2
  • 2
    • 44449091584 scopus 로고    scopus 로고
    • 50 training data
    • DOI 10.1021/ci7004548
    • Martin, E. J.; Sullivan, D. C. AutoShim: empirically correctedsScoring functions for quantitative docking with a crystal structure and IC50 training data J. Chem. Inf. Model. 2008, 48, 861-872 (Pubitemid 351757751)
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.4 , pp. 861-872
    • Martin, E.J.1    Sullivan, D.C.2
  • 3
    • 77649212538 scopus 로고    scopus 로고
    • A Novel Structure-Based Multimode QSAR Method Affords Predictive Models for Phosphodiesterase Inhibitors
    • Dong, X.; Ebalunode, J. O.; Cho, S. J.; Zheng, W. A Novel Structure-Based Multimode QSAR Method Affords Predictive Models for Phosphodiesterase Inhibitors J. Chem. Inf. Model. 2010, 50, 240-250
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 240-250
    • Dong, X.1    Ebalunode, J.O.2    Cho, S.J.3    Zheng, W.4
  • 4
    • 44449170478 scopus 로고    scopus 로고
    • Surrogate AutoShim: Predocking into a universal ensemble kinase receptor for three dimensional activity prediction, very quickly, without a crystal structure
    • DOI 10.1021/ci700455u
    • Martin, E. J.; Sullivan, D. C. Surrogate AutoShim: predocking into a universal ensemble kinase receptor for three dimensional activity prediction, very quickly, without a crystal structure J. Chem. Inf. Model. 2008, 48, 873-881 (Pubitemid 351757752)
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.4 , pp. 873-881
    • Martin, E.J.1    Sullivan, D.C.2
  • 5
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi, R.; John, G. H. Wrappers for feature subset selection Artificial Intelligence 1997, 97, 273-324 (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I.; Elisseeff, A. An introduction to variable and feature selection J. Machine Learning Intell. 2003, 3, 1157-1182
    • (2003) J. Machine Learning Intell. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 7
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • Whitney, A. W. A direct method of nonparametric measurement selection IEEE Trans. Comput. 1971, 20, 1100-1103
    • (1971) IEEE Trans. Comput. , vol.20 , pp. 1100-1103
    • Whitney, A.W.1
  • 8
    • 84914813506 scopus 로고    scopus 로고
    • On the effectiveness of receptors in recognition systems
    • Marill, T.; Green, D. M. On the effectiveness of receptors in recognition systems IEEE Trans. Inf. Theory 2010, 9, 11-17
    • (2010) IEEE Trans. Inf. Theory , vol.9 , pp. 11-17
    • Marill, T.1    Green, D.M.2
  • 10
    • 80054906177 scopus 로고    scopus 로고
    • (accessed 4/1/).
    • http://ro.utia.cz/fs/fs-guideline.html (accessed 4/1/ 2011).
    • (2011)
  • 13
    • 84955738160 scopus 로고    scopus 로고
    • Evolutionary Algorithms and their Applications in Chemistry
    • pp.
    • Von, H. A. Evolutionary Algorithms and their Applications in Chemistry. Handbook of Chemoinformatics; 2010; pp 1239-1280.
    • (2010) Handbook of Chemoinformatics , pp. 1239-1280
    • Von, H.A.1
  • 14
    • 0028467707 scopus 로고
    • Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships
    • Rogers, D.; Hopfinger, A. J. Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships J. Chem. Inf. Model. 1994, 34, 854-866
    • (1994) J. Chem. Inf. Model. , vol.34 , pp. 854-866
    • Rogers, D.1    Hopfinger, A.J.2
  • 15
    • 0031552362 scopus 로고    scopus 로고
    • Development and validation of a genetic algorithm for flexible docking
    • DOI 10.1006/jmbi.1996.0897
    • Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking J. Mol. Biol. 1997, 267, 727-748 (Pubitemid 27170693)
    • (1997) Journal of Molecular Biology , vol.267 , Issue.3 , pp. 727-748
    • Jones, G.1    Willett, P.2    Glen, R.C.3    Leach, A.R.4    Taylor, R.5
  • 17
    • 26444479778 scopus 로고    scopus 로고
    • Optimization by Simulated Annealing
    • Kirkpatrick, R. G. C. D.; Vecchi, M. P. Optimization by Simulated Annealing Science. New Series 2010, 220 (4598) 671-680
    • (2010) Science. New Series , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, R.G.C.D.1    Vecchi, M.P.2
  • 18
    • 0029230341 scopus 로고
    • Automated Descriptor Selection for Quantitative Structure-Activity- Relationships Using Generalized Simulated Annealing
    • Sutter, J. M.; Dixon, S. L.; Jurs, P. C. Automated Descriptor Selection for Quantitative Structure-Activity-Relationships Using Generalized Simulated Annealing J. Chem. Inf. Comput. Sci. 1995, 35, 77-84
    • (1995) J. Chem. Inf. Comput. Sci. , vol.35 , pp. 77-84
    • Sutter, J.M.1    Dixon, S.L.2    Jurs, P.C.3
  • 19
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-activity correlation using binary particle swarms
    • DOI 10.1021/jm0104668
    • Agrafiotis, D. K.; Cedeno, W. Feature selection for structure-activity correlation using binary particle swarms J. Med. Chem. 2002, 45, 1098-1107 (Pubitemid 34173920)
    • (2002) Journal of Medicinal Chemistry , vol.45 , Issue.5 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeno, W.2
  • 20
    • 18344383551 scopus 로고    scopus 로고
    • Optimized block-wise variable combination by particle swarm optimization for partial least squares modeling in quantitative structure-activity relationship studies
    • DOI 10.1021/ci049890i
    • Lin, W. Q.; Jiang, J. H.; Shen, Q.; Shen, G. L.; Yu, R. Q. Optimized block-wise variable combination by particle swarm optimization for partial least squares modeling in quantitative structure-activity relationship studies J. Chem. Inf. Model. 2005, 45, 486-493 (Pubitemid 40635356)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.2 , pp. 486-493
    • Lin, W.-Q.1    Jiang, J.-H.2    Shen, Q.3    Shen, G.-L.4    Yu, R.-Q.5
  • 21
    • 23844525967 scopus 로고    scopus 로고
    • Modified ant colony optimization algorithm for variable selection in QSAR modeling: QSAR studies of cyclooxygenase inhibitors
    • DOI 10.1021/ci049610z
    • Shen, Q.; Jiang, J. H.; Tao, J. c.; Shen, G. L.; Yu, R. Q. Modified Ant Colony Optimization Algorithm for Variable Selection in QSAR Modeling: QSAR Studies of Cyclooxygenase Inhibitors J. Chem. Inf. Model. 2005, 45, 1024-1029 (Pubitemid 41156702)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.4 , pp. 1024-1029
    • Shen, Q.1    Jiang, J.-H.2    Tao, J.-C.3    Shen, G.-L.4    Yu, R.-Q.5
  • 22
    • 85013515810 scopus 로고
    • Comparative study of techniques for large-scale feature selection
    • In; Gelsema, E. Kanal, L.
    • Ferri, F.; Pudil, P.; Hatef, M.; Kittler, J. Comparative study of techniques for large-scale feature selection. In Pattern Recognition in Practice IV; Gelsema, E.,; Kanal, L., Eds.; 1994; pp 403-413.
    • (1994) Pattern Recognition in Practice IV , pp. 403-413
    • Ferri, F.1    Pudil, P.2    Hatef, M.3    Kittler, J.4
  • 23
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • DOI 10.1016/S0031-3203(99)00041-2
    • Kudo, M.; Sklansky, J. Comparison of algorithms that select features for pattern classifiers Pattern Recognit. 2000, 33, 25-41 (Pubitemid 32081876)
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 24
    • 0031078007 scopus 로고    scopus 로고
    • Feature Selection: Evaluation, Application, and Small Sample Performance
    • Anil, J. Feature Selection: Evaluation, Application, and Small Sample Performance IEEE Trans. Pattern Analysis Machine Intell. 1997, 19, 153-158
    • (1997) IEEE Trans. Pattern Analysis Machine Intell. , vol.19 , pp. 153-158
    • Anil, J.1
  • 25
    • 80054882225 scopus 로고    scopus 로고
    • DockIt. (accessed 4/1/)
    • DockIt. http://www.metaphorics.com/products/dockit.html (accessed 4/1/ 2011).
    • (2011)
  • 26
    • 0031181346 scopus 로고    scopus 로고
    • QXP: Powerful, rapid computer algorithms for structure-based drug design
    • Mcmartin, C.; Bohacek, R. S. QXP: powerful, rapid computer algorithms for structure-based drug design J. Comput.-Aided Mol. Des. 1997, 11, 333-344 (Pubitemid 127506740)
    • (1997) Journal of Computer-Aided Molecular Design , vol.11 , Issue.4 , pp. 333-344
    • McMartin, C.1    Bohacek, R.S.2
  • 27
    • 80054941261 scopus 로고    scopus 로고
    • Magnet. (accessed 4/1/).
    • Magnet. http://www.metaphorics.com/products/magnet/index.html (accessed 4/1/ 2011).
    • (2011)
  • 28
    • 80054917982 scopus 로고    scopus 로고
    • pls: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR); R package version 1.2-0, 2006. (accessed 4/1/).
    • Wehrens, R.; Mevik, B. H. pls: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR); R package version 1.2-0, 2006. http://www.cran.r-project.org/ (accessed 4/1/ 2010).
    • (2010)
    • Wehrens, R.1    Mevik, B.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.