메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1804-1809

Learning HTN method preconditions and action models from partial observations

Author keywords

[No Author keywords available]

Indexed keywords

KNOWLEDGE ENGINEERING; TREES (MATHEMATICS);

EID: 78751688349     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (43)

References (13)
  • 1
    • 84880732671 scopus 로고    scopus 로고
    • Learning partially observable deterministic action models
    • E. Amir. Learning partially observable deterministic action models. In Proceedings of IJCAI, pages 1433-1439, 2005.
    • (2005) Proceedings of IJCAI , pp. 1433-1439
    • Amir, E.1
  • 3
    • 0007980271 scopus 로고    scopus 로고
    • A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems
    • B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems. J. Comb. Optim., 2(4), 1998.
    • (1998) J. Comb. Optim. , vol.2 , Issue.4
    • Borchers, B.1    Furman, J.2
  • 4
    • 2842560201 scopus 로고
    • STRIPS: A new approach to the application of theorem proving to problem solving
    • R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence Journal, pages 189-208, 1971.
    • (1971) Artificial Intelligence Journal , pp. 189-208
    • Fikes, R.1    Nilsson, N.J.2
  • 5
    • 57749179704 scopus 로고    scopus 로고
    • HTN-MAKER: Learning HTNs with minimal additional knowledge engineering required
    • C. Hogg, H. Muñoz-Avila, and U. Kuter. HTN-MAKER: Learning HTNs with minimal additional knowledge engineering required. In Proceedings of AAAI, pages 950-956, 2008.
    • (2008) Proceedings of AAAI , pp. 950-956
    • Hogg, C.1    Muñoz-Avila, H.2    Kuter, U.3
  • 6
    • 31844435717 scopus 로고    scopus 로고
    • Learning approximate preconditions formethods in hierarchical plans
    • O. Ilghami, H. Muñoz-Avila, D. S. Nau, and D. W. Aha. Learning approximate preconditions formethods in hierarchical plans. In Proceedings of ICML, pages 337-344, 2005.
    • (2005) Proceedings of ICML , pp. 337-344
    • Ilghami, O.1    Muñoz-Avila, H.2    Nau, D.S.3    Aha, D.W.4
  • 7
    • 25144484030 scopus 로고    scopus 로고
    • GIPO II: HTN planning in a tool-supported knowledge engineering environment
    • T. L. McCluskey, D. Liu, and R. M. Simpson. GIPO II: HTN planning in a tool-supported knowledge engineering environment. In Proceedings of ICAPS, pages 92-101, 2003.
    • (2003) Proceedings of ICAPS , pp. 92-101
    • McCluskey, T.L.1    Liu, D.2    Simpson, R.M.3
  • 9
    • 33749234811 scopus 로고    scopus 로고
    • Learning hierarchical task networks by obervation
    • N. Nejati, P. Langley, and T. Konik. Learning hierarchical task networks by obervation. In Proceedings of ICML, pages 665-672, 2006.
    • (2006) Proceedings of ICML , pp. 665-672
    • Nejati, N.1    Langley, P.2    Konik, T.3
  • 10
    • 13444280906 scopus 로고    scopus 로고
    • Learning goal-decomposition rules using exercises
    • C. Reddy and P. Tadepalli. Learning goal-decomposition rules using exercises. In Proceedings of ICML, pages 278-286, 1997.
    • (1997) Proceedings of ICML , pp. 278-286
    • Reddy, C.1    Tadepalli, P.2
  • 11
    • 9444274008 scopus 로고    scopus 로고
    • CaBMA: Case-based project management assistant
    • K. Xu and H. Muñoz-Avila. CaBMA: Case-based project management assistant. In Proceedings of IAAI, pages 931-936, 2004.
    • (2004) Proceedings of IAAI , pp. 931-936
    • Xu, K.1    Muñoz-Avila, H.2
  • 12
    • 29344465639 scopus 로고    scopus 로고
    • A domain-independent system for case-based task decomposition without domain theories
    • K. Xu and H. Muñoz-Avila. A domain-independent system for case-based task decomposition without domain theories. In Proceedings of AAAI, pages 234-240, 2005.
    • (2005) Proceedings of AAAI , pp. 234-240
    • Xu, K.1    Muñoz-Avila, H.2
  • 13
    • 33847340622 scopus 로고    scopus 로고
    • Learning action models from plan examples using weighted MAX-SAT
    • February
    • Q. Yang, K. Wu, and Y. Jiang. Learning action models from plan examples using weighted MAX-SAT. Artificial Intelligence Journal, 171:107-143, February 2007.
    • (2007) Artificial Intelligence Journal , vol.171 , pp. 107-143
    • Yang, Q.1    Wu, K.2    Jiang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.