메뉴 건너뛰기




Volumn 6, Issue 6, 2011, Pages 571-576

Application of adaptive neuro-fuzzy inference for wind power short-term forecasting

Author keywords

Forecasting; Fuzzy logic; Neural networks; Wind power

Indexed keywords

FORECASTING; FUZZY LOGIC; FUZZY NEURAL NETWORKS; WIND POWER;

EID: 80054741197     PISSN: 19314973     EISSN: 19314981     Source Type: Journal    
DOI: 10.1002/tee.20697     Document Type: Article
Times cited : (18)

References (27)
  • 2
    • 77950886370 scopus 로고    scopus 로고
    • A pitch control malfunction analysis for wind turbines with permanent magnet synchronous generator and full-power converters: proportional integral versus fractional-order controllers.
    • Melício R, Mendes VMF, Catalão JPS. A pitch control malfunction analysis for wind turbines with permanent magnet synchronous generator and full-power converters: proportional integral versus fractional-order controllers. Electric Power Components and Systems 2010; 38(4):387-406.
    • (2010) Electric Power Components and Systems , vol.38 , Issue.4 , pp. 387-406
    • Melício, R.1    Mendes, V.M.F.2    Catalão, J.P.S.3
  • 5
    • 67650407238 scopus 로고    scopus 로고
    • Study on forecast of time series of wind velocity for wind power generation by using wide meteorological data.
    • Taniguchi K, Ichiyanagi K, Yukita K, Goto Y. Study on forecast of time series of wind velocity for wind power generation by using wide meteorological data. IEEJ Transactions on Power and Energy 2008; 128(2):416-422.
    • (2008) IEEJ Transactions on Power and Energy , vol.128 , Issue.2 , pp. 416-422
    • Taniguchi, K.1    Ichiyanagi, K.2    Yukita, K.3    Goto, Y.4
  • 7
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models.
    • Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy 2009; 34(5):1388-1393.
    • (2009) Renewable Energy , vol.34 , Issue.5 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 10
    • 67349193311 scopus 로고    scopus 로고
    • Estimation of energy yield from wind farms using artificial neural networks.
    • Mabel MC, Fernandez E. Estimation of energy yield from wind farms using artificial neural networks. IEEE Transactions on Energy Conversion 2009; 24(2):459-464.
    • (2009) IEEE Transactions on Energy Conversion , vol.24 , Issue.2 , pp. 459-464
    • Mabel, M.C.1    Fernandez, E.2
  • 11
    • 67650495257 scopus 로고    scopus 로고
    • Application of recurrent neural network to 3-hours-ahead generating power forecasting for wind power generators.
    • Yona A, Senjyu T, Urasaki N, Funabshi T. Application of recurrent neural network to 3-hours-ahead generating power forecasting for wind power generators. IEEJ Transactions on Power and Energy 2009; 129(5):591-597.
    • (2009) IEEJ Transactions on Power and Energy , vol.129 , Issue.5 , pp. 591-597
    • Yona, A.1    Senjyu, T.2    Urasaki, N.3    Funabshi, T.4
  • 12
    • 70350166802 scopus 로고    scopus 로고
    • A study of forecasting precision enhancement of short-term wind power generation by use of NN method.
    • Kakuta S, Wu G. A study of forecasting precision enhancement of short-term wind power generation by use of NN method. IEEJ Transactions on Power and Energy 2009; 129(9):1091-1097.
    • (2009) IEEJ Transactions on Power and Energy , vol.129 , Issue.9 , pp. 1091-1097
    • Kakuta, S.1    Wu, G.2
  • 13
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models.
    • Jursa R, Rohrig K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. International Journal of Forecasting 2008; 24(4):694-709.
    • (2008) International Journal of Forecasting , vol.24 , Issue.4 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 14
    • 70350707612 scopus 로고    scopus 로고
    • Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting.
    • Bessa RJ, Miranda V, Gama J. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. IEEE Transactions on Power Systems 2009; 24(4):1657-1666.
    • (2009) IEEE Transactions on Power Systems , vol.24 , Issue.4 , pp. 1657-1666
    • Bessa, R.J.1    Miranda, V.2    Gama, J.3
  • 15
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information.
    • Fan S, Liao JR, Yokoyama R, Chen LN, Lee WJ. Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Transactions on Energy Conversion 2009; 24(2):474-482.
    • (2009) IEEE Transactions on Energy Conversion , vol.24 , Issue.2 , pp. 474-482
    • Fan, S.1    Liao, J.R.2    Yokoyama, R.3    Chen, L.N.4    Lee, W.J.5
  • 17
    • 63149102540 scopus 로고    scopus 로고
    • Hydraulic plant generation forecasting in Colombian power market using ANFIS.
    • Moreno J. Hydraulic plant generation forecasting in Colombian power market using ANFIS. Energy Economics 2009; 31(3):450-455.
    • (2009) Energy Economics , vol.31 , Issue.3 , pp. 450-455
    • Moreno, J.1
  • 18
    • 77950298459 scopus 로고    scopus 로고
    • An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines.
    • Ata R, Kocyigit Y. An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. Expert Systems with Applications 2010; 37(7):5454-5460.
    • (2010) Expert Systems with Applications , vol.37 , Issue.7 , pp. 5454-5460
    • Ata, R.1    Kocyigit, Y.2
  • 19
    • 42549141543 scopus 로고    scopus 로고
    • An ANFIS-based forecasting for solar radiation data from sunshine duration and ambient temperature. Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, Florida, USA
    • Mellit A, Arab AH, Khorissi N, Salhi H. An ANFIS-based forecasting for solar radiation data from sunshine duration and ambient temperature. Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, Florida, USA, 2007.
    • (2007)
    • Mellit, A.1    Arab, A.H.2    Khorissi, N.3    Salhi, H.4
  • 20
    • 49249109272 scopus 로고    scopus 로고
    • RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment.
    • Yun Z, Quan Z, Caixin S, Shaolan L, Yuming L, Yang S. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. IEEE Transactions on Power Systems 2008; 82(2):853-858.
    • (2008) IEEE Transactions on Power Systems , vol.82 , Issue.2 , pp. 853-858
    • Yun, Z.1    Quan, Z.2    Caixin, S.3    Shaolan, L.4    Yuming, L.5    Yang, S.6
  • 21
    • 60249084891 scopus 로고    scopus 로고
    • An expert system of price forecasting for used cars using adaptive neuro-fuzzy inference.
    • Wu J-D, Hsu C-C, Chen H-C. An expert system of price forecasting for used cars using adaptive neuro-fuzzy inference. Expert Systems with Applications 2009; 36(4):7809-7817.
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7809-7817
    • Wu, J.-D.1    Hsu, C.-C.2    Chen, H.-C.3
  • 24
    • 1442289939 scopus 로고    scopus 로고
    • Energy price forecasting in the Ontario competitive power system market.
    • Rodriguez CP, Anders GJ. Energy price forecasting in the Ontario competitive power system market. IEEE Transactions on Power Systems 2004; 19(1):366-374.
    • (2004) IEEE Transactions on Power Systems , vol.19 , Issue.1 , pp. 366-374
    • Rodriguez, C.P.1    Anders, G.J.2
  • 25
    • 36348985409 scopus 로고    scopus 로고
    • Using adaptive network based fuzzy inference system to forecast regional electricity loads.
    • Ying LC, Pan MC. Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Conversion and Management 2008; 49(2):205-211.
    • (2008) Energy Conversion and Management , vol.49 , Issue.2 , pp. 205-211
    • Ying, L.C.1    Pan, M.C.2
  • 27


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.