메뉴 건너뛰기




Volumn 129, Issue 5, 2009, Pages

Application of recurrent neural network to 3-hours-ahead generating power forecasting for wind power generators

Author keywords

3 Hours ahead forecasting; Neural Network; Wind power generation; Wind speed forecasting

Indexed keywords

3-HOURS-AHEAD FORECASTING; ALTERNATIVE ENERGY SOURCE; FORECASTING ABILITY; POWER OUT PUT; SIMULATION RESULT; WIND GENERATORS; WIND POWER GENERATORS; WIND SPEED; WIND SPEED FORECASTING;

EID: 67650495257     PISSN: 03854213     EISSN: 13488147     Source Type: Journal    
DOI: 10.1541/ieejpes.129.591     Document Type: Article
Times cited : (8)

References (14)
  • 1
    • 67650428265 scopus 로고    scopus 로고
    • Compensation Method for Fluctuation Power of Wind Power Generation Using Biomass Gas Turbine Generator and Flywheel Energy Storage Equipment
    • 2008-3, in Japanese
    • M. Hara, N. Yamamura, M. Ishida, M. Wakita, Y. Kamada, and T. Maeda: "Compensation Method for Fluctuation Power of Wind Power Generation Using Biomass Gas Turbine Generator and Flywheel Energy Storage Equipment", IEEJ Trans. PE, Vol. 128, No. 3, pp. 564-570 (2008-3) (in Japanese)
    • IEEJ Trans. PE , vol.128 , Issue.3 , pp. 564-570
    • Hara, M.1    Yamamura, N.2    Ishida, M.3    Wakita, M.4    Kamada, Y.5    Maeda, T.6
  • 2
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • L. Landberg: "Short-term prediction of the power production from wind farms", Wind Engineering and Industrial Aerodynamics, Vol. 50, No. 1, pp. 207-220 (1999)
    • (1999) Wind Engineering and Industrial Aerodynamics , vol.50 , Issue.1 , pp. 207-220
    • Landberg, L.1
  • 3
    • 0035451837 scopus 로고    scopus 로고
    • Using Neural Network to Estimate Wind Turbine Power Generation
    • S. Li, D. C. Wunsch, E. A. O'Hair, and M. G. Giesselmann: "Using Neural Network to Estimate Wind Turbine Power Generation", IEEE Trans. Energy Conversion, Vol. 16, No. 3, pp. 276-282 (2001)
    • (2001) IEEE Trans. Energy Conversion , vol.16 , Issue.3 , pp. 276-282
    • Li, S.1    Wunsch, D.C.2    O'Hair, E.A.3    Giesselmann, M.G.4
  • 4
    • 38849209866 scopus 로고    scopus 로고
    • Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States
    • W. Y. Y. Cheng and W. J. Steenburgh: "Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States", Weather and Forecasting, Vol. 22, No. 6, pp. 1304-1318 (2007)
    • (2007) Weather and Forecasting , vol.22 , Issue.6 , pp. 1304-1318
    • Cheng, W.Y.Y.1    Steenburgh, W.J.2
  • 5
    • 35348877883 scopus 로고    scopus 로고
    • One-hour-ahead wind speed prediction using a Bayesian methodology
    • M. S. Miranda and R. W. Dunn: "One-hour-ahead wind speed prediction using a Bayesian methodology", IEEE PES General Meeting, p. 6 (2006)
    • (2006) IEEE PES General Meeting , pp. 6
    • Miranda, M.S.1    Dunn, R.W.2
  • 7
    • 39749089223 scopus 로고    scopus 로고
    • Predicting weather, climate and extreme events
    • M.J. Miller and P.K. Smolarkiewicz: "Predicting weather, climate and extreme events", Comput. Phys., Vol.227, No.7, pp. 3429-3430 (2008)
    • (2008) Comput. Phys , vol.227 , Issue.7 , pp. 3429-3430
    • Miller, M.J.1    Smolarkiewicz, P.K.2
  • 8
    • 29244466901 scopus 로고    scopus 로고
    • Neural-network-based sensorless maximum wind energy capture with compensated power coefficient
    • L. Hui, K.L. Shi, and P.G McLaren: "Neural-network-based sensorless maximum wind energy capture with compensated power coefficient", IEEE Trans, lndustr. Applic, Vol.41, No.6, pp. 1548-1556 (2005)
    • (2005) IEEE Trans, lndustr. Applic , vol.41 , Issue.6 , pp. 1548-1556
    • Hui, L.1    Shi, K.L.2    McLaren, P.G.3
  • 9
    • 67650425170 scopus 로고    scopus 로고
    • Japanese Source
    • (Japanese Source)
  • 10
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman: "Finding structure in time", Cognitive Sci., Vol.14, pp. 179-211 (1990)
    • (1990) Cognitive Sci , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 11
    • 0032495049 scopus 로고    scopus 로고
    • Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities
    • B. Kermanshahi: "Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities", Neurocompuiing, Vol.23, No. 1-3, pp. 125-133(1998)
    • (1998) Neurocompuiing , vol.23 , Issue.1-3 , pp. 125-133
    • Kermanshahi, B.1
  • 12
    • 67650413303 scopus 로고    scopus 로고
    • Application of Recurrent Neural Network to Long-Term-Ahead Generating Power Forecasting for Wind Power Generator
    • IEEE PES, pp
    • T. Senjyu, A. Yona, N. Urasaki, and T. Funabashi: "Application of Recurrent Neural Network to Long-Term-Ahead Generating Power Forecasting for Wind Power Generator", Power Systems Conference and Exposition, IEEE PES, pp. 1260-1265 (2006)
    • (2006) Power Systems Conference and Exposition , pp. 1260-1265
    • Senjyu, T.1    Yona, A.2    Urasaki, N.3    Funabashi, T.4
  • 13
    • 67650460617 scopus 로고    scopus 로고
    • Japanese Source
    • (Japanese Source)
  • 14
    • 67650396518 scopus 로고    scopus 로고
    • Japanese Source
    • (Japanese Source)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.