메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2313-2320

Hybrid learning based on Multiple Self-Organizing Maps and Genetic Algorithm

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATA; CLASSIFICATION METHODS; DATA CLUSTERS; DAVIES-BOULDIN INDEX; HYBRID LEARNING; INPUT DATAS; LOCAL MINIMUMS; OBJECTIVE FUNCTIONS; OPTIMAL SOLUTIONS; UCI MACHINE LEARNING REPOSITORY;

EID: 80054731428     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2011.6033517     Document Type: Conference Paper
Times cited : (4)

References (21)
  • 1
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • Springer
    • N. Friedman, D. Geiger and M.Goldszmidt, "Bayesian Network Classifiers", Machine Learning, vol. 29, no. 2-3, pp. 131-163, Springer, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 2
    • 0032165624 scopus 로고    scopus 로고
    • The supervised learning Gaussian mixture model
    • J. Ma and W. Gao, "The supervised learning Gaussian mixture model", Journal of Computer Science and Technology, vol. 13, no. 5, pp. 471-474, 1998.
    • (1998) Journal of Computer Science and Technology , vol.13 , Issue.5 , pp. 471-474
    • Ma, J.1    Gao, W.2
  • 4
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. R. Rabiner, "A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition", Proc. of IEEE, vol. 77, no. 2, 1989.
    • (1989) Proc. of IEEE , vol.77 , Issue.2
    • Rabiner, L.R.1
  • 5
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian contextual classification based on Markov random fields
    • Q. Jackson and D. A. Landgrebe, "Adaptive Bayesian Contextual Classification Based on Markov Random Fields", IEEE Trans. on Geoscience and Remote Sensing, vol. 40, no. 11, 2002.
    • (2002) IEEE Trans. on Geoscience and Remote Sensing , vol.40 , Issue.11
    • Jackson, Q.1    Landgrebe, D.A.2
  • 9
  • 10
    • 0029256585 scopus 로고
    • Determining input features for multilayer perceptrons
    • L. M. Belue and K. W. Bauer, "Determining input features for multilayer perceptrons", Neurocomputing, vol. 7, no. 2, pp. 111-121, 1995.
    • (1995) Neurocomputing , vol.7 , Issue.2 , pp. 111-121
    • Belue, L.M.1    Bauer, K.W.2
  • 11
    • 70449396535 scopus 로고    scopus 로고
    • SOMSO: A self-organizing map approach for spatial outlier detection with multiple attributes
    • Q. Cai, H. He, and H. Man, "SOMSO: A Self-Organizing Map Approach for Spatial Outlier Detection with Multiple Attributes," in Proc. Int. Joint Conf. on Neural Networks, pp. 425-431, 2009.
    • (2009) Proc. Int. Joint Conf. on Neural Networks , pp. 425-431
    • Cai, Q.1    He, H.2    Man, H.3
  • 12
    • 0030270228 scopus 로고    scopus 로고
    • Engineering applications of the self-organizing map
    • T. Kohonen, E. Oja, O. Simula, A. Visa and J. Kangas, "Engineering Applications of the Self-Organizing Map," Proc. of the IEEE, vol. 84, pp.1358-1384, 1996.
    • (1996) Proc. of the IEEE , vol.84 , pp. 1358-1384
    • Kohonen, T.1    Oja, E.2    Simula, O.3    Visa, A.4    Kangas, J.5
  • 13
    • 84893447132 scopus 로고    scopus 로고
    • Learning vector quantization: Generalization ability and dynamics of competing prototypes
    • A. Witoelar, M. Biehl and B. Hammer, "Learning vector quantization: generalization ability and dynamics of competing prototypes", Workshop on the Self-Organizing Map, 2007.
    • (2007) Workshop on the Self-Organizing Map
    • Witoelar, A.1    Biehl, M.2    Hammer, B.3
  • 14
    • 80054728971 scopus 로고    scopus 로고
    • Supervised SOM based architecture versus multilayer perception and RBF networks
    • Uppsala, Sweden
    • D. Gil and M. Johnsson, "Supervised SOM Based Architecture versus Multilayer Perception and RBF Networks", Proc. of SAIS 2010, pp. 15-24, Uppsala, Sweden, 2010.
    • (2010) Proc. of SAIS 2010 , pp. 15-24
    • Gil, D.1    Johnsson, M.2
  • 15
    • 13844266749 scopus 로고    scopus 로고
    • Data classification with radial basis function networks based on a novel kernel density estimation algorithm
    • Y. Oyang, S. Hwang, Y. Ou, C. Chen, and Z. Chen, "Data classification with radial basis function networks based on a novel kernel density estimation algorithm", IEEE Trans. on Neural Networks, vol. 16, no. 1, pp. 225-36, 2005.
    • (2005) IEEE Trans. on Neural Networks , vol.16 , Issue.1 , pp. 225-36
    • Oyang, Y.1    Hwang, S.2    Ou, Y.3    Chen, C.4    Chen, Z.5
  • 16
    • 80054767229 scopus 로고
    • Multiple self-organizing maps for supervised learning
    • E. Cervera and A. P. Pobil, "Multiple self-organizing maps for supervised learning", Lecture Notes in Computer Science, vol. 930, pp. 345-352, 1995.
    • (1995) Lecture Notes in Computer Science , vol.930 , pp. 345-352
    • Cervera, E.1    Pobil, A.P.2
  • 18
    • 0037399775 scopus 로고    scopus 로고
    • Cluster validation techniques for genome expression data
    • Elsevier
    • N. Bolshakova and F. Azuaje, "Cluster validation techniques for genome expression data", Signal Processing, vol. 83, no. 4, pp. 825-833, Elsevier, 2003.
    • (2003) Signal Processing , vol.83 , Issue.4 , pp. 825-833
    • Bolshakova, N.1    Azuaje, F.2
  • 19
    • 80054717341 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/datasets.html.
  • 21
    • 70449528324 scopus 로고    scopus 로고
    • Investigation of self-organizing map for genetic algorithm
    • E. Kita, S. Kan, and Z. Fei, "Investigation of self-organizing map for genetic algorithm", Adavances in Engineering Software, vol. 41, no. 2, pp.148-153,2010.
    • (2010) Adavances in Engineering Software , vol.41 , Issue.2 , pp. 148-153
    • Kita, E.1    Kan, S.2    Fei, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.