-
1
-
-
0031276011
-
Bayesian network classifiers
-
Springer
-
N. Friedman, D. Geiger and M.Goldszmidt, "Bayesian Network Classifiers", Machine Learning, vol. 29, no. 2-3, pp. 131-163, Springer, 1997.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
2
-
-
0032165624
-
The supervised learning Gaussian mixture model
-
J. Ma and W. Gao, "The supervised learning Gaussian mixture model", Journal of Computer Science and Technology, vol. 13, no. 5, pp. 471-474, 1998.
-
(1998)
Journal of Computer Science and Technology
, vol.13
, Issue.5
, pp. 471-474
-
-
Ma, J.1
Gao, W.2
-
3
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird and D. B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm", Journal of the Royal Statistical Society, Series B (Methodological), vol. 39, no. 1, pp.1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B (Methodological)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
4
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
L. R. Rabiner, "A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition", Proc. of IEEE, vol. 77, no. 2, 1989.
-
(1989)
Proc. of IEEE
, vol.77
, Issue.2
-
-
Rabiner, L.R.1
-
5
-
-
0036875946
-
Adaptive Bayesian contextual classification based on Markov random fields
-
Q. Jackson and D. A. Landgrebe, "Adaptive Bayesian Contextual Classification Based on Markov Random Fields", IEEE Trans. on Geoscience and Remote Sensing, vol. 40, no. 11, 2002.
-
(2002)
IEEE Trans. on Geoscience and Remote Sensing
, vol.40
, Issue.11
-
-
Jackson, Q.1
Landgrebe, D.A.2
-
8
-
-
0034313673
-
Neural networks for classification: A survey
-
G. P. Zhang, "Neural Networks for Classification: A Survey", IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 30, no. 4, 2000.
-
(2000)
IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews
, vol.30
, Issue.4
-
-
Zhang, G.P.1
-
9
-
-
0003425664
-
-
Technical Report, Dept. of Electronics and Computer Science, University of Southampton
-
S. R. Gunn, "Support Vector Machines for Classification and Regression", Technical Report, Dept. of Electronics and Computer Science, University of Southampton, 1998.
-
(1998)
Support Vector Machines for Classification and Regression
-
-
Gunn, S.R.1
-
10
-
-
0029256585
-
Determining input features for multilayer perceptrons
-
L. M. Belue and K. W. Bauer, "Determining input features for multilayer perceptrons", Neurocomputing, vol. 7, no. 2, pp. 111-121, 1995.
-
(1995)
Neurocomputing
, vol.7
, Issue.2
, pp. 111-121
-
-
Belue, L.M.1
Bauer, K.W.2
-
11
-
-
70449396535
-
SOMSO: A self-organizing map approach for spatial outlier detection with multiple attributes
-
Q. Cai, H. He, and H. Man, "SOMSO: A Self-Organizing Map Approach for Spatial Outlier Detection with Multiple Attributes," in Proc. Int. Joint Conf. on Neural Networks, pp. 425-431, 2009.
-
(2009)
Proc. Int. Joint Conf. on Neural Networks
, pp. 425-431
-
-
Cai, Q.1
He, H.2
Man, H.3
-
12
-
-
0030270228
-
Engineering applications of the self-organizing map
-
T. Kohonen, E. Oja, O. Simula, A. Visa and J. Kangas, "Engineering Applications of the Self-Organizing Map," Proc. of the IEEE, vol. 84, pp.1358-1384, 1996.
-
(1996)
Proc. of the IEEE
, vol.84
, pp. 1358-1384
-
-
Kohonen, T.1
Oja, E.2
Simula, O.3
Visa, A.4
Kangas, J.5
-
13
-
-
84893447132
-
Learning vector quantization: Generalization ability and dynamics of competing prototypes
-
A. Witoelar, M. Biehl and B. Hammer, "Learning vector quantization: generalization ability and dynamics of competing prototypes", Workshop on the Self-Organizing Map, 2007.
-
(2007)
Workshop on the Self-Organizing Map
-
-
Witoelar, A.1
Biehl, M.2
Hammer, B.3
-
14
-
-
80054728971
-
Supervised SOM based architecture versus multilayer perception and RBF networks
-
Uppsala, Sweden
-
D. Gil and M. Johnsson, "Supervised SOM Based Architecture versus Multilayer Perception and RBF Networks", Proc. of SAIS 2010, pp. 15-24, Uppsala, Sweden, 2010.
-
(2010)
Proc. of SAIS 2010
, pp. 15-24
-
-
Gil, D.1
Johnsson, M.2
-
15
-
-
13844266749
-
Data classification with radial basis function networks based on a novel kernel density estimation algorithm
-
Y. Oyang, S. Hwang, Y. Ou, C. Chen, and Z. Chen, "Data classification with radial basis function networks based on a novel kernel density estimation algorithm", IEEE Trans. on Neural Networks, vol. 16, no. 1, pp. 225-36, 2005.
-
(2005)
IEEE Trans. on Neural Networks
, vol.16
, Issue.1
, pp. 225-36
-
-
Oyang, Y.1
Hwang, S.2
Ou, Y.3
Chen, C.4
Chen, Z.5
-
16
-
-
80054767229
-
Multiple self-organizing maps for supervised learning
-
E. Cervera and A. P. Pobil, "Multiple self-organizing maps for supervised learning", Lecture Notes in Computer Science, vol. 930, pp. 345-352, 1995.
-
(1995)
Lecture Notes in Computer Science
, vol.930
, pp. 345-352
-
-
Cervera, E.1
Pobil, A.P.2
-
18
-
-
0037399775
-
Cluster validation techniques for genome expression data
-
Elsevier
-
N. Bolshakova and F. Azuaje, "Cluster validation techniques for genome expression data", Signal Processing, vol. 83, no. 4, pp. 825-833, Elsevier, 2003.
-
(2003)
Signal Processing
, vol.83
, Issue.4
, pp. 825-833
-
-
Bolshakova, N.1
Azuaje, F.2
-
19
-
-
80054717341
-
-
http://archive.ics.uci.edu/ml/datasets.html.
-
-
-
-
21
-
-
70449528324
-
Investigation of self-organizing map for genetic algorithm
-
E. Kita, S. Kan, and Z. Fei, "Investigation of self-organizing map for genetic algorithm", Adavances in Engineering Software, vol. 41, no. 2, pp.148-153,2010.
-
(2010)
Adavances in Engineering Software
, vol.41
, Issue.2
, pp. 148-153
-
-
Kita, E.1
Kan, S.2
Fei, Z.3
|