메뉴 건너뛰기




Volumn 73, Issue 1, 2011, Pages 55-78

Strong consistency of lasso estimators

Author keywords

Convergence rates; Penalized regression; Strong law

Indexed keywords


EID: 80054714071     PISSN: 09727671     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (18)
  • 2
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009). Simultaneous analysis of lasso and dantzig selector. Ann. Statist., 37, 1705-1732.
    • (2009) Ann. Statist , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 3
    • 0000170706 scopus 로고
    • Weak and strong consistency of the least squares estimators in regression models. Z. Wahrscheinlichkeitstheorie und Verw
    • Drygas, H. (1976). Weak and strong consistency of the least squares estimators in regression models. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 34, 119-127.
    • (1976) Gebiete , vol.34 , pp. 119-127
    • Drygas, H.1
  • 4
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression
    • With discussion, and a rejoinder by the authors
    • Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. Ann. Statist., 32, 407-499. With discussion, and a rejoinder by the authors.
    • (2004) Ann. Statist , vol.32 , pp. 407-499
    • Efron, B.1    Hastie, T.2    Johnstone, I.3    Tibshirani, R.4
  • 5
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The bridge versus the lasso
    • Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Statist., 7, 397-416.
    • (1998) J. Comput. Graph. Statist , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 6
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • Huang, J., Horowitz, J. L. and Ma, S. (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Statist., 36, 587-613.
    • (2008) Ann. Statist , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.L.2    Ma, S.3
  • 7
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight, K. and Fu, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist., 28, 1356-1378.
    • (2000) Ann. Statist , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 8
    • 0018190841 scopus 로고
    • Strong consistency of least squares estimates in multiple regression
    • Lai, T. L., Robbins, H. and Wei, C. Z. (1978). Strong consistency of least squares estimates in multiple regression. Proc. Nat. Acad. Sci. U.S.A., 75, 3034-3036.
    • (1978) Proc. Nat. Acad. Sci. U.S.A , vol.75 , pp. 3034-3036
    • Lai, T.L.1    Robbins, H.2    Wei, C.Z.3
  • 9
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
    • Lounici, K. (2008). Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electron. J. Stat., 2, 90-102.
    • (2008) Electron J. Stat , vol.2 , pp. 90-102
    • Lounici, K.1
  • 10
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist., 34, 1436-1462.
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 11
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • Meinshausen, N. and Yu, B. (2009). Lasso-type recovery of sparse representations for high-dimensional data. Ann. Statist., 37, 246-270.
    • (2009) Ann. Statist , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 13
    • 0003436776 scopus 로고
    • John Wiley & Sons, New York London-Sydney, second edition. Wiley Series in Probability and Mathematical Statistics
    • Rao, C. R. (1973). Linear statistical inference and its applications. John Wiley & Sons, New York London-Sydney, second edition. Wiley Series in Probability and Mathematical Statistics.
    • (1973) Linear Statistical Inference and Its Applications
    • Rao, C.R.1
  • 14
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc., Ser. B, 58, 267-288.
    • (1996) J. Roy. Statist. Soc., Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 16
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • Zhang, C.-H. and Huang, J. (2008). The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Statist., 36, 1567-1594.
    • (2008) Ann. Statist , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 17
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res., 7, 2541-2563.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 18
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc., 101, 1418-1429.
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.