-
1
-
-
84914830669
-
LP-bounds of solutions of reaction diffusion equations
-
Alikakos N.D. LP-bounds of solutions of reaction diffusion equations. Comm. Partial Differential Equations 1979, 4:827-868.
-
(1979)
Comm. Partial Differential Equations
, vol.4
, pp. 827-868
-
-
Alikakos, N.D.1
-
2
-
-
0000614595
-
An application of the invariance principle to reaction-diffusion equations
-
Alikakos N.D. An application of the invariance principle to reaction-diffusion equations. J. Differential Equations 1979, 33:201-225.
-
(1979)
J. Differential Equations
, vol.33
, pp. 201-225
-
-
Alikakos, N.D.1
-
3
-
-
33746377577
-
Volume effects in the Keller-Segel model: energy estimates preventing blow-up
-
Calvez V., Carrillo J.A. Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. 2006, 86:155-175.
-
(2006)
J. Math. Pures Appl.
, vol.86
, pp. 155-175
-
-
Calvez, V.1
Carrillo, J.A.2
-
4
-
-
33750624355
-
Quasilinear nonuniformly parabolic system modelling chemotaxis
-
Cieślak T. Quasilinear nonuniformly parabolic system modelling chemotaxis. J. Math. Anal. Appl. 2007, 326(2):1410-1426.
-
(2007)
J. Math. Anal. Appl.
, vol.326
, Issue.2
, pp. 1410-1426
-
-
Cieślak, T.1
-
5
-
-
43049127974
-
Global existence of solutions to a chemotaxis system with volume filling effect
-
Cieślak T. Global existence of solutions to a chemotaxis system with volume filling effect. Colloq. Math. 2008, 111(1):117-134.
-
(2008)
Colloq. Math.
, vol.111
, Issue.1
, pp. 117-134
-
-
Cieślak, T.1
-
6
-
-
61649113706
-
Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system
-
Cieślak T., Laurençot P. Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system. C. R. Acad. Sci. Paris, Ser. I 2009, 347:237-242.
-
(2009)
C. R. Acad. Sci. Paris, Ser. I
, vol.347
, pp. 237-242
-
-
Cieślak, T.1
Laurençot, P.2
-
7
-
-
41449094921
-
Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions
-
Cieślak T., Morales-Rodrigo C. Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions. Topol. Methods Nonlinear Anal. 2007, 29(2):361-381.
-
(2007)
Topol. Methods Nonlinear Anal.
, vol.29
, Issue.2
, pp. 361-381
-
-
Cieślak, T.1
Morales-Rodrigo, C.2
-
8
-
-
43049112453
-
Finite-time blow-up in a quasilinear system of chemotaxis
-
Cieślak T., Winkler M. Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 2008, 21:1057-1076.
-
(2008)
Nonlinearity
, vol.21
, pp. 1057-1076
-
-
Cieślak, T.1
Winkler, M.2
-
9
-
-
0032367668
-
On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions
-
Dal Passo R., Garcke H., Grün G. On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. 1998, 29(2):321-342.
-
(1998)
SIAM J. Math. Anal.
, vol.29
, Issue.2
, pp. 321-342
-
-
Dal Passo, R.1
Garcke, H.2
Grün, G.3
-
10
-
-
71649085140
-
Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect
-
Djie K., Winkler M. Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 2010, 72(2):1044-1064.
-
(2010)
Nonlinear Anal.
, vol.72
, Issue.2
, pp. 1044-1064
-
-
Djie, K.1
Winkler, M.2
-
13
-
-
0001404830
-
Global existence for a parabolic chemotaxis model with prevention of overcrowding
-
Hillen T., Painter K.J. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. in Appl. Math. 2001, 26:281-301.
-
(2001)
Adv. in Appl. Math.
, vol.26
, pp. 281-301
-
-
Hillen, T.1
Painter, K.J.2
-
14
-
-
63049107118
-
A user's guide to PDE models for chemotaxis
-
Hillen T., Painter K.J. A user's guide to PDE models for chemotaxis. J. Math. Biol. 2009, 58:183-217.
-
(2009)
J. Math. Biol.
, vol.58
, pp. 183-217
-
-
Hillen, T.1
Painter, K.J.2
-
15
-
-
0035646454
-
Blow-up in a chemotaxis model without symmetry assumptions
-
Horstmann D., Wang G. Blow-up in a chemotaxis model without symmetry assumptions. European J. Appl. Math. 2001, 12:159-177.
-
(2001)
European J. Appl. Math.
, vol.12
, pp. 159-177
-
-
Horstmann, D.1
Wang, G.2
-
16
-
-
18144371222
-
Boundedness vs. blow-up in a chemotaxis system
-
Horstmann D., Winkler M. Boundedness vs. blow-up in a chemotaxis system. J. Differential Equations 2005, 215(1):52-107.
-
(2005)
J. Differential Equations
, vol.215
, Issue.1
, pp. 52-107
-
-
Horstmann, D.1
Winkler, M.2
-
17
-
-
84966208077
-
On explosions of solutions to a system of partial differential equations modelling chemotaxis
-
Jäger W., Luckhaus S. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 1992, 329:819-824.
-
(1992)
Trans. Amer. Math. Soc.
, vol.329
, pp. 819-824
-
-
Jäger, W.1
Luckhaus, S.2
-
18
-
-
0014748565
-
Initiation of slime mold aggregation viewed as an instability
-
Keller E.F., Segel L.A. Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 1970, 26:399-415.
-
(1970)
J. Theoret. Biol.
, vol.26
, pp. 399-415
-
-
Keller, E.F.1
Segel, L.A.2
-
19
-
-
15844396394
-
Preventing blow-up in a chemotaxis model
-
Kowalczyk R. Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 2005, 305:566-585.
-
(2005)
J. Math. Anal. Appl.
, vol.305
, pp. 566-585
-
-
Kowalczyk, R.1
-
20
-
-
41449086239
-
On the global existence of solutions to an aggregation model
-
Kowalczyk R., Szymańska Z. On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 2008, 343:379-398.
-
(2008)
J. Math. Anal. Appl.
, vol.343
, pp. 379-398
-
-
Kowalczyk, R.1
Szymańska, Z.2
-
21
-
-
0001205112
-
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis
-
Nagai T., Senba T., Yoshida K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. Ser. Int. 1997, 40:411-433.
-
(1997)
Funkcial. Ekvac. Ser. Int.
, vol.40
, pp. 411-433
-
-
Nagai, T.1
Senba, T.2
Yoshida, K.3
-
22
-
-
0141644434
-
Finite dimensional attractors for one-dimensional Keller-Segel equations
-
Osaki K., Yagi A. Finite dimensional attractors for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 2001, 44:441-469.
-
(2001)
Funkcial. Ekvac.
, vol.44
, pp. 441-469
-
-
Osaki, K.1
Yagi, A.2
-
23
-
-
4944248574
-
Volume-filling and quorum-sensing in models for chemosensitive movement
-
Painter K.J., Hillen T. Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 2002, 10(4):501-543.
-
(2002)
Can. Appl. Math. Q.
, vol.10
, Issue.4
, pp. 501-543
-
-
Painter, K.J.1
Hillen, T.2
-
25
-
-
33645150332
-
A quasi-linear system of chemotaxis
-
Senba T., Suzuki T. A quasi-linear system of chemotaxis. Abstr. Appl. Anal. 2006, 2006:1-21.
-
(2006)
Abstr. Appl. Anal.
, vol.2006
, pp. 1-21
-
-
Senba, T.1
Suzuki, T.2
-
26
-
-
73349139844
-
On ε-regularity theorem and asymptotic behaviors of solutions for Keller-Segel systems
-
Sugiyama Y. On ε-regularity theorem and asymptotic behaviors of solutions for Keller-Segel systems. SIAM J. Math. Anal. 2009, 41(4):1664-1692.
-
(2009)
SIAM J. Math. Anal.
, vol.41
, Issue.4
, pp. 1664-1692
-
-
Sugiyama, Y.1
-
27
-
-
73849129287
-
Does a 'volume-filling effect' always prevent chemotactic collapse?
-
Winkler M. Does a 'volume-filling effect' always prevent chemotactic collapse?. Math. Methods Appl. Sci. 2010, 33:12-24.
-
(2010)
Math. Methods Appl. Sci.
, vol.33
, pp. 12-24
-
-
Winkler, M.1
-
28
-
-
77952551861
-
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model
-
Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differential Equations 2010, 248:2889-2905.
-
(2010)
J. Differential Equations
, vol.248
, pp. 2889-2905
-
-
Winkler, M.1
-
29
-
-
9244236567
-
Global attractor for a chemotaxis model with prevention of overcrowding
-
Wrzosek D. Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear Anal. 2004, 59:1293-1310.
-
(2004)
Nonlinear Anal.
, vol.59
, pp. 1293-1310
-
-
Wrzosek, D.1
-
30
-
-
33646266962
-
Long time behaviour of solutions to a chemotaxis model with volume filling effect
-
Wrzosek D. Long time behaviour of solutions to a chemotaxis model with volume filling effect. Proc. Roy. Soc. Edinburgh Sect. A 2006, 136:431-444.
-
(2006)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.136
, pp. 431-444
-
-
Wrzosek, D.1
|