-
1
-
-
0000614595
-
An application of the invariance principle to reaction-diffusion equations
-
Alikakos A 1979 An application of the invariance principle to reaction-diffusion equations J. Diff. Eqns 33 203-25
-
(1979)
J. Diff. Eqns
, vol.33
, Issue.2
, pp. 201-225
-
-
Alikakos, A.1
-
2
-
-
33746377577
-
A volume filling effect in the Keller-Segel model: Energy estimates preventing blow-up
-
Calvez V and Carrillo J 2006 A volume filling effect in the Keller-Segel model: energy estimates preventing blow-up J. Math. Pures Appl. 86 155-75
-
(2006)
J. Math. Pures Appl.
, vol.86
, Issue.2
, pp. 155-175
-
-
Calvez, V.1
Carrillo, J.2
-
4
-
-
43049127974
-
Global existence of solutions to a chemotaxis system with volume filling effect
-
Cieślak T 2008 Global existence of solutions to a chemotaxis system with volume filling effect Colloq. Math. 111 117-34
-
(2008)
Colloq. Math.
, vol.111
, pp. 117-134
-
-
Cieślak, T.1
-
5
-
-
33750624355
-
Quasilinear non-uniformly parabolic system modelling chemotaxis
-
Cieślak T 2007 Quasilinear non-uniformly parabolic system modelling chemotaxis J. Math. Anal. Appl. 326 1410-26
-
(2007)
J. Math. Anal. Appl.
, vol.326
, Issue.2
, pp. 1410-1426
-
-
Cieślak, T.1
-
6
-
-
41449094921
-
Quasilinear nonuniformly parabolic-elliptic system modelling chemotaxis with volume filling effect: Existence and uniqueness of global solutions
-
Cieślak T and Morales-Rodrigo C 2007 Quasilinear nonuniformly parabolic-elliptic system modelling chemotaxis with volume filling effect: existence and uniqueness of global solutions Top. Methods Nonlinear Anal. 29 361-81
-
(2007)
Top. Methods Nonlinear Anal.
, vol.29
, pp. 361-381
-
-
Cieślak, T.1
Morales-Rodrigo, C.2
-
8
-
-
0032445844
-
Global behavior of a reaction-diffusion system modelling chemotaxis
-
Gajewski H and Zacharias K 1998 Global behavior of a reaction-diffusion system modelling chemotaxis Math. Nachr. 195 77-114
-
(1998)
Math. Nachr.
, vol.195
, pp. 77-114
-
-
Gajewski, H.1
Zacharias, K.2
-
9
-
-
4944248574
-
Volume filling and quorum sensing in models for chemosensitive movement
-
Hillen T and Painter K 2002 Volume filling and quorum sensing in models for chemosensitive movement Can. Appl. Math. Q. 10 501-43
-
(2002)
Can. Appl. Math. Q.
, vol.10
, pp. 501-543
-
-
Hillen, T.1
Painter, K.2
-
10
-
-
0011248009
-
The nonsymmetric case of the Keller-Segel model in chemotaxis: Some recent results
-
Horstmann D 2001 The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent results Nonlinear Diff. Eqns Appl. (NoDEA) 8 399-423
-
(2001)
Nonlinear Diff. Eqns Appl. (NoDEA)
, vol.8
, Issue.4
, pp. 399-423
-
-
Horstmann, D.1
-
11
-
-
18144371222
-
Boundedness versus blow-up in a chemotaxis system
-
Horstmann D and Winkler M 2005 Boundedness versus blow-up in a chemotaxis system J. Diff. Eqns 215 52-107
-
(2005)
J. Diff. Eqns
, vol.215
, Issue.1
, pp. 52-107
-
-
Horstmann, D.1
Winkler, M.2
-
12
-
-
84966208077
-
On explosions of solutions to a system of partial differential equations modelling chemotaxis
-
Jäger W and Luckhaus S 1992 On explosions of solutions to a system of partial differential equations modelling chemotaxis Trans. Am. Math. Soc. 329 819-24
-
(1992)
Trans. Am. Math. Soc.
, vol.329
, Issue.2
, pp. 819-824
-
-
Jäger, W.1
Luckhaus, S.2
-
13
-
-
0014748565
-
Initiation of slime mold aggregation viewed as an instability
-
Keller E F and Segel L A 1970 Initiation of slime mold aggregation viewed as an instability J. Theor. Biol. 26 399-415
-
(1970)
J. Theor. Biol.
, vol.26
, Issue.3
, pp. 399-415
-
-
Keller, E.F.1
Segel, L.A.2
-
14
-
-
15844396394
-
Preventing blow-up in a chemotaxis model
-
Kowalczyk R 2005 Preventing blow-up in a chemotaxis model J. Math. Anal. Appl. 305 566-88
-
(2005)
J. Math. Anal. Appl.
, vol.305
, Issue.2
, pp. 566-588
-
-
Kowalczyk, R.1
-
16
-
-
38549145006
-
Exogeneous control of vascular networks formation in vitro: A mathematical model
-
Lanza V, Ambrosi D and Preziosi L 2006 Exogeneous control of vascular networks formation in vitro: a mathematical model Netw. Heterog. Media 1 621-37
-
(2006)
Netw. Heterog. Media
, vol.1
, pp. 621-637
-
-
Lanza, V.1
Ambrosi, D.2
Preziosi, L.3
-
17
-
-
34547452103
-
Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases
-
Luckhaus S and Sugiyama Y 2007 Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases Indiana Univ. Math. J. 56 1279-97
-
(2007)
Indiana Univ. Math. J.
, vol.56
, Issue.3
, pp. 1279-1297
-
-
Luckhaus, S.1
Sugiyama, Y.2
-
18
-
-
33645150332
-
A quasilinear parabolic system of chemotaxis
-
Senba T and Suzuki T 2006 A quasilinear parabolic system of chemotaxis Abstr. Appl. Anal. 23061 21pp
-
(2006)
Abstr. Appl. Anal.
-
-
Senba, T.1
Suzuki, T.2
-
19
-
-
34547418914
-
Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems
-
Sugiyama Y 2006 Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems Diff. Integral Eqns 19 841-76
-
(2006)
Diff. Integral Eqns
, vol.19
, pp. 841-876
-
-
Sugiyama, Y.1
-
20
-
-
43049127610
-
Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models
-
Sugiyama Y 2007 Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models Adv. Diff. Eqns 12 121-44
-
(2007)
Adv. Diff. Eqns
, vol.12
, pp. 121-144
-
-
Sugiyama, Y.1
-
21
-
-
33646542023
-
Global existence and decay properties for a degenerate Keller-Segel model with a power factor in a drift term
-
Sugiyama Y and Kunii H 2006 Global existence and decay properties for a degenerate Keller-Segel model with a power factor in a drift term J. Diff. Eqns 227 333-64
-
(2006)
J. Diff. Eqns
, vol.227
, Issue.1
, pp. 333-364
-
-
Sugiyama, Y.1
Kunii, H.2
-
22
-
-
23044533952
-
Nonlinear parabolic differential equations and inequalities: Current developments in partial differential equations (Temuco 1999)
-
Walter W 2002 Nonlinear parabolic differential equations and inequalities: current developments in partial differential equations (Temuco 1999) Discrete Cont. Dyn. Syst. 8 451-68
-
(2002)
Discrete Cont. Dyn. Syst.
, vol.8
, pp. 451-468
-
-
Walter, W.1
|