메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Combination of time series forecasts using neural network

Author keywords

combination; ensemble; forecasting; neural network; prediction; time series

Indexed keywords

COMBINATION; COMBINATION METHOD; COMBINATION SCHEMAS; DATA SETS; DIMENSIONAL REDUCTION; DIMENSIONAL REDUCTION TECHNIQUES; ENSEMBLE; INDIVIDUAL PREDICTION; LINEAR COMBINATIONS; NON-LINEAR; NON-LINEAR RELATIONSHIPS; NON-PARAMETRIC; ORDINARY LEAST SQUARES; TIME SERIES FORECASTS; TIME-SERIES DATA; WEIGHTED AVERAGES;

EID: 80054043521     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICEEI.2011.6021770     Document Type: Conference Paper
Times cited : (5)

References (28)
  • 2
    • 69149109466 scopus 로고    scopus 로고
    • Ensemble neural network approach for accurate load forecasting in a power system
    • K. Siwek, S. Osowski, R. Szupiluk, Ensemble Neural Network Approach For Accurate Load Forecasting In A Power System, Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 2, 303-315
    • (2009) Int. J. Appl. Math. Comput. Sci. , vol.19 , Issue.2 , pp. 303-315
    • Siwek, K.1    Osowski, S.2    Szupiluk, R.3
  • 4
    • 36348935677 scopus 로고    scopus 로고
    • Quarterly time seris forecasting with neural networks
    • November
    • G. P. Zhang and D. M. Kline, Quarterly Time Seris Forecasting with Neural Networks, IEEE Transactions on Neural Networks, Vol. 18, No. 6, November 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.6
    • Zhang, G.P.1    Kline, D.M.2
  • 10
    • 11944263904 scopus 로고    scopus 로고
    • The forecasting performance of various models of seasonality and nonlinearity for quarterly industrial production
    • P. H. Franses and D. Van Dijk, The forecasting performance of various models of seasonality and nonlinearity for quarterly industrial production, International Journal of Forecasting, vol. 21, pp. 87-102, 2005.
    • (2005) International Journal of Forecasting , vol.21 , pp. 87-102
    • Franses, P.H.1    Van Dijk, D.2
  • 11
    • 0030560209 scopus 로고    scopus 로고
    • Is seasonal adjustment a linear or nonlinear data filtering process?
    • E. Ghysels, C. W. J. Granger, and P. L. Siklos, Is seasonal adjustment a linear or nonlinear data filtering process?, J. Business Econom. Statist., vol. 14, pp. 374-386, 1996.
    • (1996) J. Business Econom. Statist. , vol.14 , pp. 374-386
    • Ghysels, E.1    Granger, C.W.J.2    Siklos, P.L.3
  • 15
    • 38649113208 scopus 로고    scopus 로고
    • Application of wrapper approach and composite classifier to the stock trend prediction
    • C. Huang, D. Yang, Y. Chuang, Application of wrapper approach and composite classifier to the stock trend prediction, Elsevier, Expert Systems with Applications 34 (2008) 2870-2878.
    • (2008) Elsevier, Expert Systems with Applications , vol.34 , pp. 2870-2878
    • Huang, C.1    Yang, D.2    Chuang, Y.3
  • 16
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural network: The state of the art
    • March
    • G. Q. Zang, B. E. Patuwo, and M. Y. Hu, Forecasting with artificial neural network: The state of the art, International Journal of Forecasting, vol 14, no 1, pp 35062, March 1998.
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35062
    • Zangb. Patuwo E, G.Q.1    Hu, M.Y.2
  • 20
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward network
    • K. Honik, Approximation capabilities of multilayer feedforward network, Neural Networks, vol. 4, no. 2, pp. 251-257, 1991.
    • (1991) Neural Networks , vol.4 , Issue.2 , pp. 251-257
    • Honik, K.1
  • 27
    • 80054039529 scopus 로고    scopus 로고
    • Lecture Notes, College of Business and Administration, University of Colorado
    • S. R. Lawrence,Demand Forecasting:Time Series Models, Lecture Notes, College of Business and Administration, University of Colorado
    • Demand Forecasting:Time Series Models
    • Lawrence, S.R.1
  • 28
    • 79956363043 scopus 로고    scopus 로고
    • Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
    • R. R. Andrawis, A. F. Atiya, H. El-Shishiny, Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition, International Journal of Forecasting, 2011.
    • (2011) International Journal of Forecasting
    • Andrawis, R.R.1    Atiya, A.F.2    El-Shishiny, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.