메뉴 건너뛰기




Volumn , Issue , 2011, Pages 499-503

Health care fraud detection using nonnegative matrix factorization

Author keywords

fraud detection; nonnegative matrix factorization; patient mining

Indexed keywords

BASIS VECTOR; CARE MANAGEMENT; DATA SETS; FEATURE ABSTRACTION; FRAUD DETECTION; LOW RANK; NON-NEGATIVE MATRIX FACTORIZATION ALGORITHMS; NON-NEGATIVITY; NONNEGATIVE MATRIX FACTORIZATION; PATIENT MINING; RESULT EVALUATION;

EID: 80054038546     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCSE.2011.6028688     Document Type: Conference Paper
Times cited : (16)

References (14)
  • 2
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • October
    • D. Lee, H. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, vol 401, pp. 788-791, October 1999
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 3
    • 49849097634 scopus 로고    scopus 로고
    • The Relationships among Various Nonnegative Matrix Factorization Methods for Clustering
    • T. Li, C. Ding. The Relationships Among Various Nonnegative Matrix Factorization Methods for Clustering. In Proc. of the ICDM'06, Leipzig, Germany, 2006, pp. 362-371.
    • Proc. of the ICDM'06, Leipzig, Germany, 2006 , pp. 362-371
    • Li, T.1    Ding, C.2
  • 4
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative Matrix Factorization with Sparseness Constraints
    • P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research. Vol 5, pp. 1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 10
    • 56449106635 scopus 로고    scopus 로고
    • Fast newton-type methods for the least squares nonnegative matrix approximation problem
    • D. Kim, S. Sra, and I. S. Dhillon. Fast newton-type methods for the least squares nonnegative matrix approximation problem. In SDM, 2007, pp. 343-354.
    • (2007) SDM , pp. 343-354
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 11
    • 72449152230 scopus 로고    scopus 로고
    • Fast nonparametric matrix factorization for large-scale collaborative filtering
    • K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonparametric matrix factorization for large-scale collaborative filtering. In SIGIR'09, 2009, pp. 211-218.
    • (2009) SIGIR'09 , pp. 211-218
    • Yu, K.1    Zhu, S.2    Lafferty, J.3    Gong, Y.4
  • 12
    • 1842555752 scopus 로고    scopus 로고
    • EFD: A hybrid knowledge/statistical-based system for the detection of fraud
    • DOI 10.1111/1539-6975.00025
    • J. Major, D. Riedinger. EFD: A hybrid knowledge/statistical-based system for the detection of fraud. The Journal of Risk and Insurance, vol 69, No 3, pp. 309-324, 2002. (Pubitemid 40830722)
    • (2002) Journal of Risk and Insurance , vol.69 , Issue.3 , pp. 309-324
    • Major, J.A.1    Riedinger, D.R.2
  • 13
    • 3543125360 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • DOI 10.1023/B:DAMI.0000023676.72185.7c
    • Yamanishi K, Takeuchi J, Williams G, Milne P. On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery, vol 8, pp.275-300, 2004. (Pubitemid 39019964)
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.3 , pp. 275-300
    • Yamanishi, K.1    Takeuchi, J.-I.2    Williams, G.3    Milne, P.4
  • 14
    • 49549089070 scopus 로고    scopus 로고
    • A survey on statistical methods for health care fraud detection
    • Sep
    • J. Li, K. Huang, J. Jin, J. Shi. A survey on statistical methods for health care fraud detection. Health Care Manag Sci. vol 11, No3, pp.275-287, Sep 2008.
    • (2008) Health Care Manag Sci , vol.11 , Issue.3 , pp. 275-287
    • Li, J.1    Huang, K.2    Jin, J.3    Shi, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.