-
1
-
-
0033515827
-
Multilineage potential of adult human mesenchymal stem cells
-
Pittenger MF, Mackay AM, Beck SC et al: Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147
-
(1999)
Science
, vol.284
, pp. 143-147
-
-
Pittenger, M.F.1
McKay, A.M.2
Beck, S.C.3
-
2
-
-
0037019337
-
Pluripotency of mesenchymal stem cells derived from adult marrow
-
Jiang Y, Jahagirdar B, Reinhard L et al: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-49
-
(2002)
Nature
, vol.418
, pp. 41-49
-
-
Jiang, Y.1
Jahagirdar, B.2
Reinhard, L.3
-
4
-
-
77950551326
-
Mesenchymal stromal cells: Current understanding and clinical status
-
Salem HK, Thiemermann C: Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010;28(3):585-596
-
(2010)
Stem Cells
, vol.28
, Issue.3
, pp. 585-596
-
-
Salem, H.K.1
Thiemermann, C.2
-
5
-
-
70449629693
-
Optimizing mesenchymal stem cell-based therapeutics
-
Wagner J, Kean T, Young T et al: Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol 2009;5:531-536
-
(2009)
Curr Opin Biotechnol
, vol.5
, pp. 531-536
-
-
Wagner, J.1
Kean, T.2
Young, T.3
-
6
-
-
3042778829
-
Engineering principles of clinical cell-based tissue enigeering
-
Muschler GF, Nakamoto C, Griffith LG: Engineering principles of clinical cell-based tissue enigeering. J Bone Joint Surg Am 2004;86:1541-1558
-
(2004)
J Bone Joint Surg Am
, vol.86
, pp. 1541-1558
-
-
Muschler, G.F.1
Nakamoto, C.2
Griffith, L.G.3
-
8
-
-
33646015065
-
The role of mesenchymal stem cells in haemopoiesis
-
Dazzi F, Ramasamy R, Glennie S et al: The role of mesenchymal stem cells in haemopoiesis. Blood Rev 2006;20:161-171
-
(2006)
Blood Rev
, vol.20
, pp. 161-171
-
-
Dazzi, F.1
Ramasamy, R.2
Glennie, S.3
-
9
-
-
0242268524
-
Osteoblastic cells regulate the haematopoietic stem cell niche
-
Calvi LM, Adams GB, Weibrecht KW: Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425:841-846
-
(2003)
Nature
, vol.425
, pp. 841-846
-
-
Calvi, L.M.1
Adams, G.B.2
Weibrecht, K.W.3
-
10
-
-
33749334622
-
Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF and IGF-1 in response to TNF by a p38 mitogen activated protein kinase dependent mechanism
-
Wang M, Crisostomo P, Herring C et al: Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF and IGF-1 in response to TNF by a p38 mitogen activated protein kinase dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006;291:880-884
-
(2006)
Am J Physiol Regul Integr Comp Physiol
, vol.291
, pp. 880-884
-
-
Wang, M.1
Crisostomo, P.2
Herring, C.3
-
11
-
-
33644634149
-
Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium
-
Martens TP, See F, Schuster MD et al: Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med 2006;3:S18-S22.
-
(2006)
Nat Clin Pract Cardiovasc Med
, vol.3
-
-
Martens, T.P.1
See, F.2
Schuster, M.D.3
-
12
-
-
74049122788
-
Mesenchymal stromal cells for cardiovascular repair: Current status and future challenges
-
Mathiasen AB, Haack-Sørensen M, Kastrup J: Mesenchymal stromal cells for cardiovascular repair: current status and future challenges. Future Cardiol 2009;6:605-617
-
(2009)
Future Cardiol
, vol.6
, pp. 605-617
-
-
Mathiasen, A.B.1
Haack-Sørensen, M.2
Kastrup, J.3
-
13
-
-
77952893038
-
Mesenchymal stem cells rescue cardiomyoblasts from cell death in an ischemia model via direct cell-to-cell connections
-
Cselenyak A, Pankotai E, Hovath EM et al: Mesenchymal stem cells rescue cardiomyoblasts from cell death in an ischemia model via direct cell-to-cell connections. BMC Cell Biology 2010;11:29
-
(2010)
BMC Cell Biology
, vol.11
, pp. 29
-
-
Cselenyak, A.1
Pankotai, E.2
Hovath, E.M.3
-
14
-
-
0031019745
-
Isolation of putative progenitor endothelial cells for angiogenesis
-
Asahara T, Murohara T, Sullivan A et al: Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964-966
-
(1997)
Science
, vol.275
, pp. 964-966
-
-
Asahara, T.1
Murohara, T.2
Sullivan, A.3
-
15
-
-
0032528555
-
Evidence for circulating bone marrow-derived endothelial cells
-
Shi Q, Rafii S, Wu MH et al: Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362-367
-
(1998)
Blood
, vol.92
, pp. 362-367
-
-
Shi, Q.1
Rafii, S.2
Wu, M.H.3
-
16
-
-
0033978434
-
Isolation of endothelial cells and their progenitor cells from human peripheral blood
-
Boyer M, Townsend LE, Vogel LM et al: Isolation of endothelial cells and their progenitor cells from human peripheral blood. J Vasc Surg 2000;31:181-189
-
(2000)
J Vasc Surg
, vol.31
, pp. 181-189
-
-
Boyer, M.1
Townsend, L.E.2
Vogel, L.M.3
-
17
-
-
28844473169
-
Acceleration of endothelial-like cell differentiation from CD14+ monocytes in vitro
-
Zhang R, Yang H, Li M et al: Acceleration of endothelial-like cell differentiation from CD14+ monocytes in vitro. Exp Hematol 2005;33:1554-1563
-
(2005)
Exp Hematol
, vol.33
, pp. 1554-1563
-
-
Zhang, R.1
Yang, H.2
Li, M.3
-
18
-
-
0033529618
-
Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization
-
Asahara T, Masuda H, Takahashi T et al: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221-228
-
(1999)
Circ Res
, vol.85
, pp. 221-228
-
-
Asahara, T.1
Masuda, H.2
Takahashi, T.3
-
19
-
-
0032945433
-
Ischemia-and cytokineinduced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization
-
Takahashi T, Kalka C, Masuda H et al: Ischemia-and cytokineinduced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999;5:434-438.
-
(1999)
Nat Med
, vol.5
, pp. 434-438
-
-
Takahashi, T.1
Kalka, C.2
Masuda, H.3
-
20
-
-
33749521671
-
The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease
-
Güven H, Shepherd RM, Bach RG et al: The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol 2006;48:1579-1587
-
(2006)
J Am Coll Cardiol
, vol.48
, pp. 1579-1587
-
-
Güven, H.1
Shepherd, R.M.2
Bach, R.G.3
-
21
-
-
0033989026
-
Origins of circulating endothelial cells and endothelial outgrowth from blood
-
Lin Y, Weisdorf DJ, Solovey A et al: Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000;105:71-77
-
(2000)
J Clin Invest
, vol.105
, pp. 71-77
-
-
Lin, Y.1
Weisdorf, D.J.2
Solovey, A.3
-
22
-
-
20544439830
-
In vitro differentiation characteristics of cultured human mononuclear cells-implications for endothelial progenitor cell biology
-
Walenta K, Friedrich EB, Sehnert F et al: In vitro differentiation characteristics of cultured human mononuclear cells-implications for endothelial progenitor cell biology. Biochem Biophys Res Commun 2005;333:476-482
-
(2005)
Biochem Biophys Res Commun
, vol.333
, pp. 476-482
-
-
Walenta, K.1
Friedrich, E.B.2
Sehnert, F.3
-
23
-
-
0242694432
-
Identification of patients with transitional cell carcinoma of the bladder overexpressing ErbB2, ErbB3, or specific ErbB4 isoforms: Real-time reverse transcription-PCR analysis in estimation of ErbB receptor status from cancer patients
-
Junttila TT, Laato M, Vahlberg T et al: Identification of patients with transitional cell carcinoma of the bladder overexpressing ErbB2, ErbB3, or specific ErbB4 isoforms: real-time reverse transcription-PCR analysis in estimation of ErbB receptor status from cancer patients. Clin Cancer Res 2003;9:5346-5357
-
(2003)
Clin Cancer Res
, vol.9
, pp. 5346-5357
-
-
Junttila, T.T.1
Laato, M.2
Vahlberg, T.3
-
24
-
-
0034028039
-
Widespread expression of tartrate-resistant acid phosphatase (Acp 5) in the mouse embryo
-
Hayman AR, Bune AJ, Cox TM: Widespread expression of tartrate-resistant acid phosphatase (Acp 5) in the mouse embryo. J Anat 2000;196:433-441
-
(2000)
J Anat
, vol.196
, pp. 433-441
-
-
Hayman, A.R.1
Bune, A.J.2
Cox, T.M.3
-
25
-
-
0025873304
-
Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell-cell adhesion molecule
-
Albelda SM, Muller WA, Buck CA et al: Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell-cell adhesion molecule. J Cell Biol 1991;114:1059-1068
-
(1991)
J Cell Biol
, vol.114
, pp. 1059-1068
-
-
Albelda, S.M.1
Muller, W.A.2
Buck, C.A.3
-
26
-
-
33947095941
-
Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation
-
Mercado-Pimentel ME, Hubbard AD, Runyan RB: Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation. Develop Biol 2007;304:420-432
-
(2007)
Develop Biol
, vol.304
, pp. 420-432
-
-
Mercado-Pimentel, M.E.1
Hubbard, A.D.2
Runyan, R.B.3
-
28
-
-
19944432052
-
Mesenchymal stem cells differentiate into a endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model
-
Silva GV, Litovsky S, Assad JA et al: Mesenchymal stem cells differentiate into a endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150-156
-
(2005)
Circulation
, vol.111
, pp. 150-156
-
-
Silva, G.V.1
Litovsky, S.2
Assad, J.A.3
-
29
-
-
0042416929
-
Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model
-
Davani S, Marandin A, Mersin N et al: Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model, Circulation 2003;108:253-258
-
(2003)
Circulation
, vol.108
, pp. 253-258
-
-
Davani, S.1
Marandin, A.2
Mersin, N.3
-
30
-
-
0033759918
-
Structure, function and regulation of tartrate-resistant acid phosphatase
-
Oddie GW, Schenk G, Angel NZ et al: Structure, function and regulation of tartrate-resistant acid phosphatase. Bone 2000;27:575-584
-
(2000)
Bone
, vol.27
, pp. 575-584
-
-
Oddie, G.W.1
Schenk, G.2
Angel, N.Z.3
-
31
-
-
20444409488
-
Endogenous expression and endocytosis of tartrate-resistant acid phosphates by osteoblast-like cells
-
Perez-Amodio S, Vogels IMC, Schoenmaker T et al: Endogenous expression and endocytosis of tartrate-resistant acid phosphates by osteoblast-like cells. Bone 2005;36:1065-1077
-
(2005)
Bone
, vol.36
, pp. 1065-1077
-
-
Perez-Amodio, S.1
Vogels, I.M.C.2
Schoenmaker, T.3
-
32
-
-
21344437260
-
Characterization of Circulating Human Osteoclast Progenitors: Development of In Vitro Resorption Assay
-
Husheem M, Nyman JKE, Vääräniemi J et al: Characterization of Circulating Human Osteoclast Progenitors: Development of In Vitro Resorption Assay. Calcif Tissue Int 2005;76:222-230
-
(2005)
Calcif Tissue Int
, vol.76
, pp. 222-230
-
-
Husheem, M.1
Nyman, J.K.E.2
Vääräniemi, J.3
-
33
-
-
36048991451
-
Opportunities and challenges for mesenchymal stem cell-mediated heart repair
-
Atsma DE, Fibbe WE, Rabelink TJ: Opportunities and challenges for mesenchymal stem cell-mediated heart repair. Curr Opin Lipidol 2007;18:645-649
-
(2007)
Curr Opin Lipidol
, vol.18
, pp. 645-649
-
-
Atsma, D.E.1
Fibbe, W.E.2
Rabelink, T.J.3
|