-
1
-
-
33645787826
-
Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states
-
DOI 10.1016/j.aop.2005.11.014, PII S0003491605002630
-
D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys. APNYA6 0003-4916 10.1016/j.aop.2005.11.014 321, 1126 (2006). (Pubitemid 43560343)
-
(2006)
Annals of Physics
, vol.321
, Issue.5
, pp. 1126-1205
-
-
Basko, D.M.1
Aleiner, I.L.2
Altshuler, B.L.3
-
3
-
-
24244444170
-
-
PHRVAO 0031-899X 10.1103/PhysRev.109.1492
-
P. Anderson, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.109.1492 109, 1492 (1958).
-
(1958)
Phys. Rev.
, vol.109
, pp. 1492
-
-
Anderson, P.1
-
5
-
-
80053497473
-
-
e-print arXiv: 1005.3011
-
S. Knysh and V. Smelyanskiy, e-print arXiv: 1005.3011 (2010).
-
(2010)
-
-
Knysh, S.1
Smelyanskiy, V.2
-
6
-
-
0035917832
-
-
SCIEAS 0036-8075 10.1126/science.1057726
-
E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science SCIEAS 0036-8075 10.1126/science.1057726 292, 472 (2001).
-
(2001)
Science
, vol.292
, pp. 472
-
-
Farhi, E.1
Goldstone, J.2
Gutmann, S.3
Lapan, J.4
Lundgren, A.5
Preda, D.6
-
7
-
-
38949196507
-
Quantum chaos, delocalization, and entanglement in disordered Heisenberg models
-
DOI 10.1103/PhysRevE.77.021106
-
W. G. Brown, L. F. Santos, D. J. Starling, and L. Viola, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.77.021106 77, 21106 (2008). (Pubitemid 351230746)
-
(2008)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.77
, Issue.2
, pp. 021106
-
-
Brown, W.G.1
Santos, L.F.2
Starling, D.J.3
Viola, L.4
-
8
-
-
78649646838
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.82.174411
-
A. Pal and D. A. Huse, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.82. 174411 82, 174411 (2010).
-
(2010)
Phys. Rev. B
, vol.82
, pp. 174411
-
-
Pal, A.1
Huse, D.A.2
-
9
-
-
34247463673
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.75.155111
-
V. Oganesyan and D. A. Huse, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.75.155111 75, 155111 (2007).
-
(2007)
Phys. Rev. B
, vol.75
, pp. 155111
-
-
Oganesyan, V.1
Huse, D.A.2
-
10
-
-
40949110684
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.77.064426
-
M. Žnidarič, T. Prosen, and P. Prelovšek, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.77.064426 77, 64426 (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 64426
-
-
Žnidarič, M.1
Prosen, T.2
Prelovšek, P.3
-
11
-
-
50549209745
-
-
PHLTAM 0031-9163 10.1016/0031-9163(63)90259-2
-
R. Richardson, Phys. Lett. PHLTAM 0031-9163 10.1016/0031-9163(63)90259-2 3, 277 (1963).
-
(1963)
Phys. Lett.
, vol.3
, pp. 277
-
-
Richardson, R.1
-
12
-
-
49749209878
-
-
NUPHA7 0029-5582 10.1016/0029-5582(64)90687-X
-
R. Richardson and N. Sherman, Nucl. Phys. NUPHA7 0029-5582 10.1016/0029-5582(64)90687-X 52, 221 (1964).
-
(1964)
Nucl. Phys.
, vol.52
, pp. 221
-
-
Richardson, R.1
Sherman, N.2
-
13
-
-
8444221307
-
Colloquium: Exactly solvable Richardson-Gaudin models for many-body quantum systems
-
DOI 10.1103/RevModPhys.76.643
-
J. Dukelsky, S. Pittel, and G. Sierra, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.76.643 76, 643 (2004). (Pubitemid 40176838)
-
(2004)
Reviews of Modern Physics
, vol.76
, Issue.3
, pp. 643-662
-
-
Dukelsky, J.1
Pittel, S.2
Sierra, G.3
-
15
-
-
40749096859
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.77.064503
-
A. Faribault, P. Calabrese, and J. S. Caux, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.77.064503 77, 64503 (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 64503
-
-
Faribault, A.1
Calabrese, P.2
Caux, J.S.3
-
16
-
-
79961179778
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.83.235124
-
A. Faribault, O. El Araby, C. Strater, and V. Gritsev, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.83.235124 83, 235124 (2011).
-
(2011)
Phys. Rev. B
, vol.83
, pp. 235124
-
-
Faribault, A.1
El Araby, O.2
Strater, C.3
Gritsev, V.4
-
18
-
-
0035981717
-
-
JMAPAQ 0022-2488 10.1063/1.1497700
-
D. Meyer and N. Wallach, J. Math. Phys. JMAPAQ 0022-2488 10.1063/1.1497700 43, 4273 (2002).
-
(2002)
J. Math. Phys.
, vol.43
, pp. 4273
-
-
Meyer, D.1
Wallach, N.2
-
19
-
-
34547403067
-
-
JMAPAQ 1751-8113 10.1088/1751-8113/40/28/S17
-
L. Viola and W. Brown, J. Phys. A: Math. Gen. JMAPAQ 1751-8113 10.1088/1751-8113/40/28/S17 40, 8109 (2007).
-
(2007)
J. Phys. A: Math. Gen.
, vol.40
, pp. 8109
-
-
Viola, L.1
Brown, W.2
-
20
-
-
80053529831
-
-
e-print arXiv: 1006.1634
-
E. Canovi, D. Rossini, R. Fazio, G. Santoro, and A. Silva, e-print arXiv: 1006.1634 (2010).
-
(2010)
-
-
Canovi, E.1
Rossini, D.2
Fazio, R.3
Santoro, G.4
Silva, A.5
-
21
-
-
80053548703
-
-
It is known that the analog of this model in 1D, where the hopping g term just connects nearest-neighbor sites on a chain, reduces to noninteracting fermions by the Jordan-Wigner map and hence localizes for arbitrarily small disorders.
-
It is known that the analog of this model in 1D, where the hopping g term just connects nearest-neighbor sites on a chain, reduces to noninteracting fermions by the Jordan-Wigner map and hence localizes for arbitrarily small disorders.
-
-
-
-
22
-
-
79952722765
-
-
JMAPAQ 1742-5468 10.1088/1742-5468/2011/02/P02023
-
J. Caux and J. Mossel, J. Stat. Mech. JMAPAQ 1742-5468 10.1088/1742-5468/2011/02/P02023 (2011) P02023.
-
J. Stat. Mech.
, vol.2011
, pp. 02023
-
-
Caux, J.1
Mossel, J.2
-
23
-
-
0038632380
-
-
JPHAC5 0305-4470 10.1088/0305-4470/36/19/201
-
J. Links, H.-Q. Zhou, R. McKenzie, and M. Gould, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/36/19/201 36, R63 (2003).
-
(2003)
J. Phys. A
, vol.36
, pp. 63
-
-
Links, J.1
Zhou, H.-Q.2
McKenzie, R.3
Gould, M.4
-
24
-
-
80053523909
-
-
This problem is not so serious for the ground state and first excited states so one can go to much higher values of N without losing accuracy.
-
This problem is not so serious for the ground state and first excited states so one can go to much higher values of N without losing accuracy.
-
-
-
-
26
-
-
33748312097
-
Solving the Richardson equations close to the critical points
-
DOI 10.1088/0305-4470/39/37/002, PII S0305447006262024, 002
-
F. Dominguez, C. Esebbag, and J. Dukelsky, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/39/37/002 39, 10 (2006). (Pubitemid 44321702)
-
(2006)
Journal of Physics A: Mathematical and General
, vol.39
, Issue.37
, pp. 11349-11360
-
-
Dominguez, F.1
Esebbag, C.2
Dukelsky, J.3
-
27
-
-
0004073954
-
-
American Mathematical Society, Providence, RI
-
G. Szego, Orthogonal Polynomials (American Mathematical Society, Providence, RI, 1939).
-
(1939)
Orthogonal Polynomials
-
-
Szego, G.1
-
28
-
-
80053503449
-
-
note
-
α). A similar approach has also been investigated in the recent work.
-
-
-
-
29
-
-
84856206769
-
-
The python code is available on the web at
-
The python code is available on the web at [http://www.sissa.it/ statistical/PapersCode/Richardson/].
-
-
-
-
30
-
-
80053520641
-
-
We have looked for a shortcut to evaluate this sum but, to our knowledge, integrability does not help us here.
-
We have looked for a shortcut to evaluate this sum but, to our knowledge, integrability does not help us here.
-
-
-
-
31
-
-
0023291681
-
-
JPSOAW 0022-3719 10.1088/0022-3719/20/4/001
-
I. Campbell, J. Flesselles, R. Jullien, and R. Botet, J. Phys. C JPSOAW 0022-3719 10.1088/0022-3719/20/4/001 20, L47 (1987).
-
(1987)
J. Phys. C
, vol.20
, pp. 47
-
-
Campbell, I.1
Flesselles, J.2
Jullien, R.3
Botet, R.4
-
32
-
-
80053472029
-
-
note
-
In the figure we show also a rational function best fit s (g) = 0.403 0.452 + g 0.656 + g, which has, however, an error of 5 % in the asymptotic value s = 0.403 instead of 0.383, the value obtained by averaging on many more realizations and including smaller N in the fit.
-
-
-
-
35
-
-
36849057498
-
-
PHYSAG 0031-8914 10.1016/0031-8914(71)90226-6
-
M. Suzuki, Physica PHYSAG 0031-8914 10.1016/0031-8914(71)90226-6 50, 277 (1971).
-
(1971)
Physica
, vol.50
, pp. 277
-
-
Suzuki, M.1
-
36
-
-
36849045071
-
-
PHYSAG 0031-8914 10.1016/0031-8914(69)90185-2
-
P. Mazur, Physica PHYSAG 0031-8914 10.1016/0031-8914(69)90185-2 43, 533 (1969).
-
(1969)
Physica
, vol.43
, pp. 533
-
-
Mazur, P.1
-
37
-
-
80053557556
-
-
Notice that for this inequality to hold, the charges have to be orthogonal with respect to the scalar product . In our case orthogonality is achieved in the thermodynamic limit; see Eq. (7).
-
Notice that for this inequality to hold, the charges have to be orthogonal with respect to the scalar product. In our case orthogonality is achieved in the thermodynamic limit; see Eq. (7).
-
-
-
-
38
-
-
12344314330
-
Exactly-solvable models derived from a generalized Gaudin algebra
-
DOI 10.1016/j.nuclphysb.2004.11.008, PII S0550321304008879
-
G. Ortiz, R. Somma, J. Dukelsky, and S. Rombouts, Nucl. Phys. B NUPBBO 0550-3213 10.1016/j.nuclphysb.2004.11.008 707, 421 (2005). (Pubitemid 40131275)
-
(2005)
Nuclear Physics B
, vol.707
, Issue.3
, pp. 421-457
-
-
Ortiz, G.1
Somma, R.2
Dukelsky, J.3
Rombouts, S.4
|