-
1
-
-
84862288194
-
Introduction to the CoNLL-2005 shared task: Semantic role labeling
-
Xavier Carreras and Luís Màrquez. 2005. Introduction to the CoNLL-2005 shared task: Semantic role labeling. In Proceedings of CoNLL.
-
(2005)
Proceedings of CoNLL
-
-
Carreras, X.1
Màrquez, L.2
-
2
-
-
84859885240
-
Coarse-to-fine n-best parsing and MaxEnt discriminative reranking
-
Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In Proceedings of ACL.
-
(2005)
Proceedings of ACL
-
-
Charniak, E.1
Johnson, M.2
-
3
-
-
85036148712
-
A maximum-entropy-inspired parser
-
Eugene Charniak. 2000. A maximum-entropy-inspired parser. In Proceedings of NAACL, pages 132-139.
-
(2000)
Proceedings of NAACL
, pp. 132-139
-
-
Charniak, E.1
-
5
-
-
85118152899
-
Three generative, lexicalised models for statistical parsing
-
Michael Collins. 1997. Three generative, lexicalised models for statistical parsing. In Proceedings of ACL, pages 16 -23.
-
(1997)
Proceedings of ACL
, pp. 16-23
-
-
Collins, M.1
-
6
-
-
0040044720
-
Discriminative reranking for natural language parsing
-
Michael Collins. 2000. Discriminative reranking for natural language parsing. In Proceedings of ICML, pages 175-182.
-
(2000)
Proceedings of ICML
, pp. 175-182
-
-
Collins, M.1
-
8
-
-
0000319411
-
Learning Bayesian networks with local structure
-
Nir Friedman and Moises Goldszmidt. 1996. Learning Bayesian networks with local structure. In Proceeding of UAI, pages 252-262.
-
(1996)
Proceeding of UAI
, pp. 252-262
-
-
Friedman, N.1
Goldszmidt, M.2
-
9
-
-
0040076126
-
Automatic labeling of semantic roles
-
Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational Linguistics, 28(3):245-288.
-
(2002)
Computational Linguistics
, vol.28
, Issue.3
, pp. 245-288
-
-
Gildea, D.1
Jurafsky, D.2
-
11
-
-
14344256569
-
Learning bayesian network classifiers by maximizing conditional likelihood
-
Daniel Grossman and Pedro Domingos. 2004. Learning bayesian network classifiers by maximizing conditional likelihood. In Proceedings of ICML, pages 361-368.
-
(2004)
Proceedings of ICML
, pp. 361-368
-
-
Grossman, D.1
Domingos, P.2
-
12
-
-
0002370418
-
A tutorial on learning with bayesian networks
-
MIT Press
-
David Heckerman. 1999. A tutorial on learning with bayesian networks. In Learning in Graphical Models. MIT Press.
-
(1999)
Learning in Graphical Models
-
-
Heckerman, D.1
-
13
-
-
85055298846
-
Structural ambiguity and lexical relations
-
Donald Hindle and Mats Rooth. 1993. Structural ambiguity and lexical relations. Computational Linguistics, 19(1):103-120.
-
(1993)
Computational Linguistics
, vol.19
, Issue.1
, pp. 103-120
-
-
Hindle, D.1
Rooth, M.2
-
14
-
-
0013363096
-
Joint and conditional estimation of tagging and parsing models
-
Mark Johnson. 2001. Joint and conditional estimation of tagging and parsing models. In Proceedings of ACL.
-
(2001)
Proceedings of ACL
-
-
Johnson, M.1
-
15
-
-
85146419425
-
Conditional structure versus conditional estimation in NLP models
-
Dan Klein and Christopher Manning. 2002. Conditional structure versus conditional estimation in NLP models. In Proceedings of EMNLP.
-
(2002)
Proceedings of EMNLP
-
-
Klein, D.1
Manning, C.2
-
16
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Morgan Kaufmann, San Francisco, CA
-
John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. 18th International Conf. on Machine Learning, pages 282-289. Morgan Kaufmann, San Francisco, CA.
-
(2001)
Proc. 18th International Conf. on Machine Learning
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
17
-
-
10244268660
-
Efficiently inducing features of conditional random fields
-
Andrew McCallum. 2003. Efficiently inducing features of conditional random fields. In Proceedings of UAI.
-
(2003)
Proceedings of UAI
-
-
McCallum, A.1
-
18
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression and Naive Bayes
-
Andrew Ng and Michael Jordan. 2002. On discriminative vs. generative classifiers: A comparison of logistic regression and Naive Bayes. In NIPS 14.
-
(2002)
NIPS
, vol.14
-
-
Ng, A.1
Jordan, M.2
-
19
-
-
85101305674
-
Discriminative training and maximum entropy models for statistical machine translation
-
Franz Josef Och and Hermann Ney. 2002. Discriminative training and maximum entropy models for statistical machine translation. In Proceedings of ACL, pages 295-302.
-
(2002)
Proceedings of ACL
, pp. 295-302
-
-
Och, F.J.1
Ney, H.2
-
22
-
-
31844434495
-
Discriminative versus generative parameter and structure learning of bayesian network classifiers
-
Franz Pernkopf and Jeff Bilmes. 2005. Discriminative versus generative parameter and structure learning of bayesian network classifiers. In Proceedings of ICML.
-
(2005)
Proceedings of ICML
-
-
Pernkopf, F.1
Bilmes, J.2
-
23
-
-
24044446171
-
Support vector learning for semantic argument classification
-
Sameer Pradhan, Kadri Hacioglu, Valerie Krugler, Wayne Ward, James Martin, and Dan Jurafsky. 2005a. Support vector learning for semantic argument classification. Machine Learning Journal.
-
(2005)
Machine Learning Journal
-
-
Pradhan, S.1
Hacioglu, K.2
Krugler, V.3
Ward, W.4
Martin, J.5
Jurafsky, D.6
-
25
-
-
84880754776
-
The necessity of syntactic parsing for semantic role labeling
-
Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2005. The necessity of syntactic parsing for semantic role labeling. In Proceedings of IJCAI.
-
(2005)
Proceedings of IJCAI
-
-
Punyakanok, V.1
Roth, D.2
Yih, W.3
-
26
-
-
84898946653
-
Classification with hybrid generative/discriminative models
-
Sebastian Thrun, Lawrence Saul, and Bernhard Schólkopf, editors, MIT Press, Cambridge, MA
-
Rajat Raina, Yirong Shen, Andrew Y. Ng, and Andrew McCallum. 2004. Classification with hybrid generative/discriminative models. In Sebastian Thrun, Lawrence Saul, and Bernhard Schólkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Raina, R.1
Shen, Y.2
Ng, A.Y.3
McCallum, A.4
-
28
-
-
85149106909
-
Discriminative language modeling with conditional random fields and the perceptron algorithm
-
Brian Roark, Murat Saraclar, Michael Collins, and Mark Johnson. 2004. Discriminative language modeling with conditional random fields and the perceptron algorithm. In Proceedings of ACL.
-
(2004)
Proceedings of ACL
-
-
Roark, B.1
Saraclar, M.2
Collins, M.3
Johnson, M.4
-
29
-
-
84983470508
-
Feature-rich part-of-speech tagging with a cyclic dependency network
-
Kristina Toutanova, Dan Klein, and Christopher D. Manning. 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceedings of HLT-NAACL.
-
(2003)
Proceedings of HLT-NAACL
-
-
Toutanova, K.1
Klein, D.2
Manning, C.D.3
-
31
-
-
21244458615
-
A weighted polynomial information gain kernel for resolving prepositional phrase attachment ambiguities with support vector machines
-
Bram Vanschoenwinkel and Bernard Manderick. 2003. A weighted polynomial information gain kernel for resolving prepositional phrase attachment ambiguities with support vector machines. In IJCAI.
-
(2003)
IJCAI
-
-
Vanschoenwinkel, B.1
Manderick, B.2
-
32
-
-
0026187945
-
The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression
-
Ian H.Witten and Timothy C. Bell. 1991. The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. IEEE Transactions on Information Theory, 37,4:1085-1094.
-
(1991)
IEEE Transactions on Information Theory
, vol.37
, Issue.4
, pp. 1085-1094
-
-
Witten, I.H.1
Bell, T.C.2
-
33
-
-
84880741886
-
Calibrating features for semantic role labeling
-
Nianwen Xue and Martha Palmer. 2004. Calibrating features for semantic role labeling. In Proceedings of EMNLP.
-
(2004)
Proceedings of EMNLP
-
-
Xue, N.1
Palmer, M.2
|