메뉴 건너뛰기




Volumn , Issue , 2006, Pages 576-584

Competitive generative models with structure learning for NLP classification tasks

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; NATURAL LANGUAGE PROCESSING SYSTEMS; STRUCTURAL OPTIMIZATION;

EID: 42649125186     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/1610075.1610155     Document Type: Conference Paper
Times cited : (10)

References (33)
  • 1
    • 84862288194 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2005 shared task: Semantic role labeling
    • Xavier Carreras and Luís Màrquez. 2005. Introduction to the CoNLL-2005 shared task: Semantic role labeling. In Proceedings of CoNLL.
    • (2005) Proceedings of CoNLL
    • Carreras, X.1    Màrquez, L.2
  • 2
    • 84859885240 scopus 로고    scopus 로고
    • Coarse-to-fine n-best parsing and MaxEnt discriminative reranking
    • Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In Proceedings of ACL.
    • (2005) Proceedings of ACL
    • Charniak, E.1    Johnson, M.2
  • 3
    • 85036148712 scopus 로고    scopus 로고
    • A maximum-entropy-inspired parser
    • Eugene Charniak. 2000. A maximum-entropy-inspired parser. In Proceedings of NAACL, pages 132-139.
    • (2000) Proceedings of NAACL , pp. 132-139
    • Charniak, E.1
  • 5
    • 85118152899 scopus 로고    scopus 로고
    • Three generative, lexicalised models for statistical parsing
    • Michael Collins. 1997. Three generative, lexicalised models for statistical parsing. In Proceedings of ACL, pages 16 -23.
    • (1997) Proceedings of ACL , pp. 16-23
    • Collins, M.1
  • 6
    • 0040044720 scopus 로고    scopus 로고
    • Discriminative reranking for natural language parsing
    • Michael Collins. 2000. Discriminative reranking for natural language parsing. In Proceedings of ICML, pages 175-182.
    • (2000) Proceedings of ICML , pp. 175-182
    • Collins, M.1
  • 8
    • 0000319411 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • Nir Friedman and Moises Goldszmidt. 1996. Learning Bayesian networks with local structure. In Proceeding of UAI, pages 252-262.
    • (1996) Proceeding of UAI , pp. 252-262
    • Friedman, N.1    Goldszmidt, M.2
  • 9
    • 0040076126 scopus 로고    scopus 로고
    • Automatic labeling of semantic roles
    • Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational Linguistics, 28(3):245-288.
    • (2002) Computational Linguistics , vol.28 , Issue.3 , pp. 245-288
    • Gildea, D.1    Jurafsky, D.2
  • 11
    • 14344256569 scopus 로고    scopus 로고
    • Learning bayesian network classifiers by maximizing conditional likelihood
    • Daniel Grossman and Pedro Domingos. 2004. Learning bayesian network classifiers by maximizing conditional likelihood. In Proceedings of ICML, pages 361-368.
    • (2004) Proceedings of ICML , pp. 361-368
    • Grossman, D.1    Domingos, P.2
  • 12
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with bayesian networks
    • MIT Press
    • David Heckerman. 1999. A tutorial on learning with bayesian networks. In Learning in Graphical Models. MIT Press.
    • (1999) Learning in Graphical Models
    • Heckerman, D.1
  • 13
    • 85055298846 scopus 로고
    • Structural ambiguity and lexical relations
    • Donald Hindle and Mats Rooth. 1993. Structural ambiguity and lexical relations. Computational Linguistics, 19(1):103-120.
    • (1993) Computational Linguistics , vol.19 , Issue.1 , pp. 103-120
    • Hindle, D.1    Rooth, M.2
  • 14
    • 0013363096 scopus 로고    scopus 로고
    • Joint and conditional estimation of tagging and parsing models
    • Mark Johnson. 2001. Joint and conditional estimation of tagging and parsing models. In Proceedings of ACL.
    • (2001) Proceedings of ACL
    • Johnson, M.1
  • 15
    • 85146419425 scopus 로고    scopus 로고
    • Conditional structure versus conditional estimation in NLP models
    • Dan Klein and Christopher Manning. 2002. Conditional structure versus conditional estimation in NLP models. In Proceedings of EMNLP.
    • (2002) Proceedings of EMNLP
    • Klein, D.1    Manning, C.2
  • 16
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Morgan Kaufmann, San Francisco, CA
    • John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. 18th International Conf. on Machine Learning, pages 282-289. Morgan Kaufmann, San Francisco, CA.
    • (2001) Proc. 18th International Conf. on Machine Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 17
    • 10244268660 scopus 로고    scopus 로고
    • Efficiently inducing features of conditional random fields
    • Andrew McCallum. 2003. Efficiently inducing features of conditional random fields. In Proceedings of UAI.
    • (2003) Proceedings of UAI
    • McCallum, A.1
  • 18
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and Naive Bayes
    • Andrew Ng and Michael Jordan. 2002. On discriminative vs. generative classifiers: A comparison of logistic regression and Naive Bayes. In NIPS 14.
    • (2002) NIPS , vol.14
    • Ng, A.1    Jordan, M.2
  • 19
    • 85101305674 scopus 로고    scopus 로고
    • Discriminative training and maximum entropy models for statistical machine translation
    • Franz Josef Och and Hermann Ney. 2002. Discriminative training and maximum entropy models for statistical machine translation. In Proceedings of ACL, pages 295-302.
    • (2002) Proceedings of ACL , pp. 295-302
    • Och, F.J.1    Ney, H.2
  • 22
    • 31844434495 scopus 로고    scopus 로고
    • Discriminative versus generative parameter and structure learning of bayesian network classifiers
    • Franz Pernkopf and Jeff Bilmes. 2005. Discriminative versus generative parameter and structure learning of bayesian network classifiers. In Proceedings of ICML.
    • (2005) Proceedings of ICML
    • Pernkopf, F.1    Bilmes, J.2
  • 25
    • 84880754776 scopus 로고    scopus 로고
    • The necessity of syntactic parsing for semantic role labeling
    • Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2005. The necessity of syntactic parsing for semantic role labeling. In Proceedings of IJCAI.
    • (2005) Proceedings of IJCAI
    • Punyakanok, V.1    Roth, D.2    Yih, W.3
  • 26
    • 84898946653 scopus 로고    scopus 로고
    • Classification with hybrid generative/discriminative models
    • Sebastian Thrun, Lawrence Saul, and Bernhard Schólkopf, editors, MIT Press, Cambridge, MA
    • Rajat Raina, Yirong Shen, Andrew Y. Ng, and Andrew McCallum. 2004. Classification with hybrid generative/discriminative models. In Sebastian Thrun, Lawrence Saul, and Bernhard Schólkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Raina, R.1    Shen, Y.2    Ng, A.Y.3    McCallum, A.4
  • 28
    • 85149106909 scopus 로고    scopus 로고
    • Discriminative language modeling with conditional random fields and the perceptron algorithm
    • Brian Roark, Murat Saraclar, Michael Collins, and Mark Johnson. 2004. Discriminative language modeling with conditional random fields and the perceptron algorithm. In Proceedings of ACL.
    • (2004) Proceedings of ACL
    • Roark, B.1    Saraclar, M.2    Collins, M.3    Johnson, M.4
  • 29
    • 84983470508 scopus 로고    scopus 로고
    • Feature-rich part-of-speech tagging with a cyclic dependency network
    • Kristina Toutanova, Dan Klein, and Christopher D. Manning. 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceedings of HLT-NAACL.
    • (2003) Proceedings of HLT-NAACL
    • Toutanova, K.1    Klein, D.2    Manning, C.D.3
  • 31
    • 21244458615 scopus 로고    scopus 로고
    • A weighted polynomial information gain kernel for resolving prepositional phrase attachment ambiguities with support vector machines
    • Bram Vanschoenwinkel and Bernard Manderick. 2003. A weighted polynomial information gain kernel for resolving prepositional phrase attachment ambiguities with support vector machines. In IJCAI.
    • (2003) IJCAI
    • Vanschoenwinkel, B.1    Manderick, B.2
  • 32
    • 0026187945 scopus 로고
    • The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression
    • Ian H.Witten and Timothy C. Bell. 1991. The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. IEEE Transactions on Information Theory, 37,4:1085-1094.
    • (1991) IEEE Transactions on Information Theory , vol.37 , Issue.4 , pp. 1085-1094
    • Witten, I.H.1    Bell, T.C.2
  • 33
    • 84880741886 scopus 로고    scopus 로고
    • Calibrating features for semantic role labeling
    • Nianwen Xue and Martha Palmer. 2004. Calibrating features for semantic role labeling. In Proceedings of EMNLP.
    • (2004) Proceedings of EMNLP
    • Xue, N.1    Palmer, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.