메뉴 건너뛰기




Volumn 13, Issue 4, 2011, Pages 657-667

Efficient collection of training data for sub-pixel land cover classification using neural networks

Author keywords

Crop area estimation; Neural networks; Sampling; Training data

Indexed keywords

ACCURACY ASSESSMENT; AGRICULTURAL LAND; ANNUAL VARIATION; ARTIFICIAL NEURAL NETWORK; CROP; IMAGE RESOLUTION; LAND CLASSIFICATION; LAND COVER; MODIS; NDVI; PIXEL; SATELLITE IMAGERY; THEMATIC MAPPING; TIME SERIES ANALYSIS;

EID: 80053280697     PISSN: 15698432     EISSN: 1872826X     Source Type: Journal    
DOI: 10.1016/j.jag.2011.03.008     Document Type: Article
Times cited : (13)

References (48)
  • 1
    • 41549157814 scopus 로고    scopus 로고
    • Classification of Landsat Thematic Mapper imagery for land cover using neural networks
    • Aitkenhead, M.J., Aalders, I.H., 2008. Classification of Landsat Thematic Mapper imagery for land cover using neural networks. Int. J. Remote Sens. 29, 2075-2084.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 2075-2084
    • Aitkenhead, M.J.1    Aalders, I.H.2
  • 2
    • 0031105739 scopus 로고    scopus 로고
    • Neural networks in remote sensing
    • Atkinson, P., Tatnall, A., 1997. Neural networks in remote sensing. Int. J. Remote Sens. 18, 699-709.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 699-709
    • Atkinson, P.1    Tatnall, A.2
  • 3
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design and application
    • Basheer, I., Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing, design and application. J. Microbiol. Methods 43, 3-31.
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, I.1    Hajmeer, M.2
  • 4
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • Benediktsson, J.A., Swain, P.H., Ersoy, O.K., 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 28, 540-552.
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 5
    • 33645115494 scopus 로고    scopus 로고
    • Assessing the extent of agriculture/pasture and secondary succession forest in the Brazilian Amazon using SPOT VEGETATION data
    • Carreiras, J., Pereira, J., Campagnolo, M., Shimabukuru, Y., 2006. Assessing the extent of agriculture/pasture and secondary succession forest in the Brazilian Amazon using SPOT VEGETATION data. Remote Sens. Environ. 101, 283-298.
    • (2006) Remote Sens. Environ. , vol.101 , pp. 283-298
    • Carreiras, J.1    Pereira, J.2    Campagnolo, M.3    Shimabukuru, Y.4
  • 6
    • 0032551520 scopus 로고    scopus 로고
    • Synergy in remote sensing: what's in a pixel?
    • Cracknell, A., 1998. Synergy in remote sensing: what's in a pixel? Int. J. Remote Sens. 19, 2025-2047.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 2025-2047
    • Cracknell, A.1
  • 7
    • 0024165680 scopus 로고
    • Large area crop classification in New South Wales Australia, using Landsat data
    • Dawbin, D.W., Evans, J.C., 1988. Large area crop classification in New South Wales Australia, using Landsat data. Int. J. Remote Sens. 9, 295-301.
    • (1988) Int. J. Remote Sens. , vol.9 , pp. 295-301
    • Dawbin, D.W.1    Evans, J.C.2
  • 8
    • 13644253122 scopus 로고    scopus 로고
    • Use of normalized difference water index for monitoring live fuel moisture
    • Dennison, P., Roberts, D., Peterson, S., Rechel, J., 2005. Use of normalized difference water index for monitoring live fuel moisture. Int. J. Remote Sens. 26, 1035-1042.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 1035-1042
    • Dennison, P.1    Roberts, D.2    Peterson, S.3    Rechel, J.4
  • 9
    • 34347260300 scopus 로고    scopus 로고
    • Spectral shape-based temporal compositing algorithms for MODIS surface reflectance data
    • Dennison, P., Roberts, D., Peterson, S., 2007. Spectral shape-based temporal compositing algorithms for MODIS surface reflectance data. Remote Sens. Environ. 109, 510-522.
    • (2007) Remote Sens. Environ. , vol.109 , pp. 510-522
    • Dennison, P.1    Roberts, D.2    Peterson, S.3
  • 12
    • 1942439885 scopus 로고    scopus 로고
    • Comparison of maximum likelihood classification with supervised neural network algorithms for land use activities
    • Erbek, F., Özkan, C., Taberner, M., 2004. Comparison of maximum likelihood classification with supervised neural network algorithms for land use activities. Int. J. Remote Sens. 25, 1733-1748.
    • (2004) Int. J. Remote Sens. , vol.25 , pp. 1733-1748
    • Erbek, F.1    Özkan, C.2    Taberner, M.3
  • 13
    • 0031080306 scopus 로고    scopus 로고
    • The pixel: a snare and a delusion
    • Fisher, P., 1997. The pixel: a snare and a delusion. Int. J. Remote Sens. 18, 679-685.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 679-685
    • Fisher, P.1
  • 14
    • 0029750642 scopus 로고    scopus 로고
    • Relating the land cover composition of mixed pixels to artificial neural network output classification
    • Foody, G.M., 1996. Relating the land cover composition of mixed pixels to artificial neural network output classification. Photogramm. Eng. Remote Sens. 62, 491-499.
    • (1996) Photogramm. Eng. Remote Sens. , vol.62 , pp. 491-499
    • Foody, G.M.1
  • 16
    • 67349093551 scopus 로고    scopus 로고
    • Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and noninferiority
    • Foody, G.M., 2009. Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and noninferiority. Remote Sens. Environ. 113, 1658-1663.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1658-1663
    • Foody, G.M.1
  • 17
    • 0034988334 scopus 로고    scopus 로고
    • Mapping continuous distributions of land cover: a comparison of maximum likelihood estimations and artificial neural networks
    • Frizelle, B., Moody, A., 2001. Mapping continuous distributions of land cover: a comparison of maximum likelihood estimations and artificial neural networks. Photogramm. Eng. Remote Sens. 67, 693-705.
    • (2001) Photogramm. Eng. Remote Sens. , vol.67 , pp. 693-705
    • Frizelle, B.1    Moody, A.2
  • 18
    • 0028431071 scopus 로고
    • The land cover map of Great Britain: an automated classification of Landsat Thematic Mapper data
    • Fuller, R.M., Groom, G.B., Jones, A.R., 1994. The land cover map of Great Britain: an automated classification of Landsat Thematic Mapper data. Photogramm. Eng. Remote Sens. 60, 553-562.
    • (1994) Photogramm. Eng. Remote Sens. , vol.60 , pp. 553-562
    • Fuller, R.M.1    Groom, G.B.2    Jones, A.R.3
  • 19
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C., Davis, L.S., Townshend, J.R.G., 2002. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 23, 725-749.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 20
    • 0033675168 scopus 로고    scopus 로고
    • Land-use classification of remotely sensed data using Kohonen selforganizing feature map neural networks
    • Ji, C.Y., 2000. Land-use classification of remotely sensed data using Kohonen selforganizing feature map neural networks. Photogramm. Eng. Remote Sens. 66, 1451-1460.
    • (2000) Photogramm. Eng. Remote Sens. , vol.66 , pp. 1451-1460
    • Ji, C.Y.1
  • 21
    • 0034734436 scopus 로고    scopus 로고
    • An approximate unconditional test of non-inferiority between two proportions
    • Kang, S., Chen, J.J., 2000. An approximate unconditional test of non-inferiority between two proportions. Stat. Med. 19, 2089-2100.
    • (2000) Stat. Med. , vol.19 , pp. 2089-2100
    • Kang, S.1    Chen, J.J.2
  • 22
    • 62349132975 scopus 로고    scopus 로고
    • Increasing the accuracy of neural network classification using refined training data
    • Kavzoglu, T., 2009. Increasing the accuracy of neural network classification using refined training data. Environ. Model. Softw. 24, 850-858.
    • (2009) Environ. Model. Softw. , vol.24 , pp. 850-858
    • Kavzoglu, T.1
  • 23
    • 0033454031 scopus 로고    scopus 로고
    • Pruning artificial neural networks: an example using land cover classification of multi-source images
    • Kavzoglu, T., Mather, P., 1999. Pruning artificial neural networks: an example using land cover classification of multi-source images. Int. J. Remote Sens. 20, 2787-2803.
    • (1999) Int. J. Remote Sens. , vol.20 , pp. 2787-2803
    • Kavzoglu, T.1    Mather, P.2
  • 24
    • 0346245214 scopus 로고    scopus 로고
    • The use of backpropagating artificial neural networks in land cover classification
    • Kavzoglu, T., Mather, P., 2003. The use of backpropagating artificial neural networks in land cover classification. Int. J. Remote Sens. 24, 4907-4938.
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 4907-4938
    • Kavzoglu, T.1    Mather, P.2
  • 25
    • 0032552629 scopus 로고    scopus 로고
    • Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements
    • Kimes, D.S., Nelson, R.F., Manry, M.T., Fung, A.K., 1998. Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements. Int. J. Remote Sens. 19, 2639-2663.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 2639-2663
    • Kimes, D.S.1    Nelson, R.F.2    Manry, M.T.3    Fung, A.K.4
  • 26
    • 11144307383 scopus 로고    scopus 로고
    • Comparison of non-linear mixture models: sub-pixel classification
    • Liu, W., Wu, E., 2005. Comparison of non-linear mixture models: sub-pixel classification. Remote Sens. Environ. 94, 145-154.
    • (2005) Remote Sens. Environ. , vol.94 , pp. 145-154
    • Liu, W.1    Wu, E.2
  • 27
    • 77958478647 scopus 로고    scopus 로고
    • Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data
    • Lunetta, R.S., Shao, Y., Ediriwickrema, J., Lyon, J.G., 2010. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. Int. J. Appl. Earth Obs. Geoinf. 12, 81-88.
    • (2010) Int. J. Appl. Earth Obs. Geoinf. , vol.12 , pp. 81-88
    • Lunetta, R.S.1    Shao, Y.2    Ediriwickrema, J.3    Lyon, J.G.4
  • 29
    • 0035440535 scopus 로고    scopus 로고
    • A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data
    • Muchoney, D.M., Williamson, J., 2001. A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data. IEEE Trans. Geosci. Remote Sens. 39, 1969-1977.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 1969-1977
    • Muchoney, D.M.1    Williamson, J.2
  • 30
    • 0036327340 scopus 로고    scopus 로고
    • Pixel- and site-based calibration and validation methods for evaluating supervised classification of remotely sensed data
    • Muchoney, D.M., Strahler, A.H., 2002. Pixel- and site-based calibration and validation methods for evaluating supervised classification of remotely sensed data. Remote Sens. Environ. 81, 290-299.
    • (2002) Remote Sens. Environ. , vol.81 , pp. 290-299
    • Muchoney, D.M.1    Strahler, A.H.2
  • 32
    • 0346875638 scopus 로고    scopus 로고
    • Classification of wheat crop with multitemporal images: performance of maximum likelihood and artificial neural networks
    • Murthy, C.S., Raju, P.V., Badrinath, K.V.S., 2003. Classification of wheat crop with multitemporal images: performance of maximum likelihood and artificial neural networks. Int. J. Remote Sens. 24, 4871-4890.
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 4871-4890
    • Murthy, C.S.1    Raju, P.V.2    Badrinath, K.V.S.3
  • 33
    • 67649398795 scopus 로고    scopus 로고
    • On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images
    • Plaza, J., Plaza, A., Perez, R., Martinez, P., 2009. On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images. Pattern Recogn. 42, 3032-3045.
    • (2009) Pattern Recogn , vol.42 , pp. 3032-3045
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4
  • 34
    • 0003604116 scopus 로고    scopus 로고
    • John Wiley & Sons Inc
    • Ripley, B., 2004. Spatial Statistics. John Wiley & Sons Inc, pp. 19-22.
    • (2004) Spatial Statistics , pp. 19-22
    • Ripley, B.1
  • 36
    • 41249103454 scopus 로고    scopus 로고
    • Mapping land- cover modifications over large areas: a comparison of machine learning techniques
    • Rogan, J., Franklin, J., Stow, D., Miller, J., Woodckock, C., Roberts, D., 2008. Mapping land- cover modifications over large areas: a comparison of machine learning techniques. Remote Sens. Environ. 112, 2272-2283.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2272-2283
    • Rogan, J.1    Franklin, J.2    Stow, D.3    Miller, J.4    Woodckock, C.5    Roberts, D.6
  • 37
    • 26944458854 scopus 로고    scopus 로고
    • Land cover assessment with MODIS imagery in Southern African Miombo Ecosystems
    • Sedano, F., Gong, P., Ferrao, M., 2005. Land cover assessment with MODIS imagery in Southern African Miombo Ecosystems. Remote Sens. Environ. 98, 429-441.
    • (2005) Remote Sens. Environ. , vol.98 , pp. 429-441
    • Sedano, F.1    Gong, P.2    Ferrao, M.3
  • 38
    • 0030291988 scopus 로고    scopus 로고
    • An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remotesensing images
    • Serpico, S.B., Bruzzone, L., Roli, F., 1996. An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remotesensing images. Pattern Recogn. Lett. 17, 1331-1341.
    • (1996) Pattern Recogn. Lett. , vol.17 , pp. 1331-1341
    • Serpico, S.B.1    Bruzzone, L.2    Roli, F.3
  • 39
    • 0027334540 scopus 로고
    • Linear mixing and the estimation of ground cover proportions
    • Settle, J., Drake, N., 1993. Linear mixing and the estimation of ground cover proportions. Int. J. Remote Sens. 14, 1159-1177.
    • (1993) Int. J. Remote Sens. , vol.14 , pp. 1159-1177
    • Settle, J.1    Drake, N.2
  • 40
    • 70449597768 scopus 로고    scopus 로고
    • Computation of correlation coefficient and its confidence interval in SAS®
    • Shen, D., Lu, Z., 2006. Computation of correlation coefficient and its confidence interval in SAS®. In: Proc. Annu. SAS Users Group Int. Conf., vol. 31, pp. 170-231.
    • (2006) Proc. Annu. SAS Users Group Int. Conf. , vol.31 , pp. 170-231
    • Shen, D.1    Lu, Z.2
  • 41
    • 34548321865 scopus 로고    scopus 로고
    • Use of remote sensing data for estimation of winter wheat yield in the United States
    • Slazar, L., Kogan, F., Roytman, L., 2007. Use of remote sensing data for estimation of winter wheat yield in the United States. Int. J. Remote Sens. 28, 3795-3811.
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 3795-3811
    • Slazar, L.1    Kogan, F.2    Roytman, L.3
  • 43
    • 0032102422 scopus 로고    scopus 로고
    • Remote sensing as a tool for agricultural statistics: a case study of area frame sampling methodology in Hellas
    • Tsiligirides, T., 1998. Remote sensing as a tool for agricultural statistics: a case study of area frame sampling methodology in Hellas. Comput. Electron. Agric. 20, 45-77.
    • (1998) Comput. Electron. Agric. , vol.20 , pp. 45-77
    • Tsiligirides, T.1
  • 44
    • 0022267354 scopus 로고
    • Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984
    • Tucker, C., Vanpraet, C., Sharman, M., Van Ittersum, G., 1985. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984. Remote Sens. Environ. 17, 233-249.
    • (1985) Remote Sens. Environ. , vol.17 , pp. 233-249
    • Tucker, C.1    Vanpraet, C.2    Sharman, M.3    Van Ittersum, G.4
  • 45
    • 0037633244 scopus 로고    scopus 로고
    • On the classification of multispectral satellite images using the multilayer perceptron
    • Venkatesh, Y.V., Raja, S.K., 2003. On the classification of multispectral satellite images using the multilayer perceptron. Pattern Recogn. 36, 2161-2175.
    • (2003) Pattern Recogn , vol.36 , pp. 2161-2175
    • Venkatesh, Y.V.1    Raja, S.K.2
  • 46
    • 54949085113 scopus 로고    scopus 로고
    • Sub- pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium
    • Verbeiren, S., Eerens, H., Piccard, I., Bauwens, I., Van Orshoven, J., 2008. Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium. Int. J. Appl. Earth Obs. Geoinf. 10, 486-497.
    • (2008) Int. J. Appl. Earth Obs. Geoinf. , vol.10 , pp. 486-497
    • Verbeiren, S.1    Eerens, H.2    Piccard, I.3    Bauwens, I.4    Van Orshoven, J.5
  • 47
    • 34247523027 scopus 로고    scopus 로고
    • Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U
    • 3
    • Wardlow, B., Egbert, S., Kastens, J., 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S Central Great Plains. Remote Sens. Environ. 108, 290-310.3
    • (2007) S Central Great Plains. Remote Sens. Environ. , vol.108 , pp. 290-310
    • Wardlow, B.1    Egbert, S.2    Kastens, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.