-
1
-
-
80053333963
-
Improving statistical machine translation using word sense disambiguation
-
Prague, Czech Republic, June. Association for Computational Linguistics
-
M. Carpuat and D. Wu. 2007. Improving statistical machine translation using word sense disambiguation. In Proceedings of EMNLP-CoNLL 2007, pages 61-72, Prague, Czech Republic, June. Association for Computational Linguistics.
-
(2007)
Proceedings of EMNLP-CoNLL
, vol.2007
, pp. 61-72
-
-
Carpuat, M.1
Wu, D.2
-
2
-
-
84880731351
-
Word sense disambiguation with distribution estimation
-
Edinburgh, Scotland
-
Y. S. Chan and H. T. Ng. 2005. Word sense disambiguation with distribution estimation. In Proceedings of IJCAI 2005, pages 1010-1015, Edinburgh, Scotland.
-
(2005)
Proceedings of IJCAI 2005
, pp. 1010-1015
-
-
Chan, Y.S.1
Ng, H.T.2
-
3
-
-
84860514028
-
Word sense disambiguation improves statistical machine translation
-
Prague, Czech Republic, June
-
Y. S. Chan, H. T. Ng, and D. Chiang. 2007. Word sense disambiguation improves statistical machine translation. In Proceedings of ACL'07, Prague, Czech Republic, June.
-
(2007)
Proceedings of ACL'07
-
-
Chan, Y.S.1
Ng, H.T.2
Chiang, D.3
-
4
-
-
0002951779
-
Aspects of the microstructure of word meanings
-
Y. Ravin and C. Leacock, editors. OUP, Oxford, UK
-
D. A. Cruse. 2000. Aspects of the microstructure of word meanings. In Y. Ravin and C. Leacock, editors, Polysemy: Theoretical and Computational Approaches, pages 30-51. OUP, Oxford, UK.
-
(2000)
Polysemy: Theoretical and Computational Approaches
, pp. 30-51
-
-
Cruse, D.A.1
-
8
-
-
33750742816
-
Do word meanings exist?
-
11
-
P. Hanks. 2000. Do word meanings exist? Computers and the Humanities, 34(1-2):205-215(11).
-
(2000)
Computers and the Humanities
, vol.34
, Issue.1-2
, pp. 205-215
-
-
Hanks, P.1
-
9
-
-
85108172927
-
Ontonotes: The 90% solution
-
New York City, USA. Association for Computational Linguistics
-
E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and R. Weischedel. 2006. Ontonotes: The 90% solution. In Proceedings of the HLT-NAACL 2006 workshop on Learning word meaning from non-linguistic data, New York City, USA. Association for Computational Linguistics.
-
(2006)
Proceedings of the HLT-NAACL 2006 Workshop on Learning Word Meaning from Non-linguistic Data
-
-
Hovy, E.1
Marcus, M.2
Palmer, M.3
Ramshaw, L.4
Weischedel, R.5
-
12
-
-
2142786709
-
Verb class disambiguation using informative priors
-
M. Lapata and C. Brew. 2004. Verb class disambiguation using informative priors. Computational Linguistics, 30(1):45-75.
-
(2004)
Computational Linguistics
, vol.30
, Issue.1
, pp. 45-75
-
-
Lapata, M.1
Brew, C.2
-
13
-
-
80053433810
-
100 million words of English: The British national corpus
-
G. Leech. 1992. 100 million words of English: the British National Corpus. Language Research, 28(1):1-13.
-
(1992)
Language Research
, vol.28
, Issue.1
, pp. 1-13
-
-
Leech, G.1
-
14
-
-
85138204707
-
Principle-based parsing without over-generation
-
Columbus, Ohio, USA
-
D. Lin. 1993. Principle-based parsing without over-generation. In Proceedings of ACL'93, Columbus, Ohio, USA.
-
(1993)
Proceedings of ACL'93
-
-
Lin, D.1
-
15
-
-
8844281752
-
Novelty detection in learning systems
-
S. Marsland. 2003. Novelty detection in learning systems. Neural computing surveys, 3:157-195.
-
(2003)
Neural Computing Surveys
, vol.3
, pp. 157-195
-
-
Marsland, S.1
-
16
-
-
80053417422
-
SemEval-2007 task 10: English lexical substitution task
-
Prague, Czech Republic
-
D. McCarthy and R. Navigli. 2007. SemEval-2007 task 10: English lexical substitution task. In Proceedings of SemEval-2007, pages 48-53, Prague, Czech Republic.
-
(2007)
Proceedings of SemEval-2007
, pp. 48-53
-
-
McCarthy, D.1
Navigli, R.2
-
21
-
-
84859927665
-
Vector-based models of semantic composition
-
Columbus, Ohio
-
J. Mitchell and M. Lapata. 2008. Vector-based models of semantic composition. In Proceedings of ACL'08 - HLT, pages 236-244, Columbus, Ohio.
-
(2008)
Proceedings of ACL'08 - HLT
, pp. 236-244
-
-
Mitchell, J.1
Lapata, M.2
-
22
-
-
84859955850
-
SemEval-2007 task 7: Coarse-grained English all-words task
-
Prague, Czech Republic
-
R. Navigli, K. C. Litkowski, and O. Hargraves. 2007. SemEval-2007 task 7: Coarse-grained English all-words task. In Proceedings of SemEval-2007, pages 30-35, Prague, Czech Republic.
-
(2007)
Proceedings of SemEval-2007
, pp. 30-35
-
-
Navigli, R.1
Litkowski, K.C.2
Hargraves, O.3
-
23
-
-
84860537708
-
Meaningful clustering of senses helps boost word sense disambiguation performance
-
Sydney, Australia
-
R. Navigli. 2006. Meaningful clustering of senses helps boost word sense disambiguation performance. In Proceedings of COLING-ACL 2006, pages 105-112, Sydney, Australia.
-
(2006)
Proceedings of COLING-ACL 2006
, pp. 105-112
-
-
Navigli, R.1
-
24
-
-
61949087310
-
Word sense disambiguation: A survey
-
R. Navigli. 2009. Word sense disambiguation: a survey. ACM Computing Surveys, 41(2):1-69.
-
(2009)
ACM Computing Surveys
, vol.41
, Issue.2
, pp. 1-69
-
-
Navigli, R.1
-
25
-
-
34347357484
-
Dependency-based construction of semantic space models
-
S. Padó and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics, 33(2):161-199.
-
(2007)
Computational Linguistics
, vol.33
, Issue.2
, pp. 161-199
-
-
Padó, S.1
Lapata, M.2
-
26
-
-
34447623794
-
Making fine-grained and coarse-grained sense distinctions, both manually and automatically
-
M. Palmer, H. Trang Dang, and C. Fellbaum. 2007. Making fine-grained and coarse-grained sense distinctions, both manually and automatically. Natural Language Engineering, 13:137-163.
-
(2007)
Natural Language Engineering
, vol.13
, pp. 137-163
-
-
Palmer, M.1
Trang Dang, H.2
Fellbaum, C.3
-
28
-
-
61949481020
-
Inducing ontological co-occurrence vectors
-
Ann Arbor, Michigan
-
P. Pantel. 2005. Inducing ontological co-occurrence vectors. In Proceedings of ACL'05, Ann Arbor, Michigan.
-
(2005)
Proceedings of ACL'05
-
-
Pantel, P.1
-
30
-
-
84883762856
-
Soft word sense disambiguation
-
Brno, Czech Republic
-
G. Ramakrishnan, B.P. Prithviraj, A. Deepa, P. Bhattacharyya, and S. Chakrabarti. 2004. Soft word sense disambiguation. In Proceedings of GWC 04, Brno, Czech Republic.
-
(2004)
Proceedings of GWC 04
-
-
Ramakrishnan, G.1
Prithviraj, B.P.2
Deepa, A.3
Bhattacharyya, P.4
Chakrabarti, S.5
-
31
-
-
84898941932
-
Support vector method for novelty detection
-
B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt. 2000. Support vector method for novelty detection. Advances in neural information processing systems, 12.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
-
-
Schölkopf, B.1
Williamson, R.2
Smola, A.3
Shawe-Taylor, J.4
Platt, J.5
-
32
-
-
0347596961
-
Automatic word sense discrimination
-
H. Schütze. 1998. Automatic word sense discrimination. Computational Linguistics, 24(1).
-
(1998)
Computational Linguistics
, vol.24
, Issue.1
-
-
Schütze, H.1
-
33
-
-
80053251268
-
Differentiating homonymy and polysemy in information retrieval
-
Vancouver, B.C., Canada
-
C. Stokoe. 2005. Differentiating homonymy and polysemy in information retrieval. In Proceedings of HLT/EMNLP-05, pages 403-410, Vancouver, B.C., Canada.
-
(2005)
Proceedings of HLT/EMNLP-05
, pp. 403-410
-
-
Stokoe, C.1
-
34
-
-
0000532609
-
Ambiguity, polysemy and vagueness
-
D. H. Tuggy. 1993. Ambiguity, polysemy and vagueness. Cognitive linguistics, 4(2):273-290.
-
(1993)
Cognitive Linguistics
, vol.4
, Issue.2
, pp. 273-290
-
-
Tuggy, D.H.1
|