메뉴 건너뛰기




Volumn , Issue , 2011, Pages 333-343

Training a log-linear parser with loss functions via softmax-margin

Author keywords

[No Author keywords available]

Indexed keywords

BELIEF PROPAGATION; CONVEX OBJECTIVES; DYNAMIC PROGRAMMING ALGORITHM; EXPECTED RISK; F-MEASURE; LOSS FUNCTIONS; PART-OF-SPEECH TAGS;

EID: 80053244033     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (27)
  • 1
    • 84859070160 scopus 로고    scopus 로고
    • A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing
    • June
    • M. Auli and A. Lopez. 2011. A Comparison of Loopy Belief Propagation and Dual Decomposition for Integrated CCG Supertagging and Parsing. In Proc. of ACL, June.
    • (2011) Proc. of ACL
    • Auli, M.1    Lopez, A.2
  • 3
    • 0003356044 scopus 로고    scopus 로고
    • Supertagging: An approach to almost parsing
    • June
    • S. Bangalore and A. K. Joshi. 1999. Supertagging: An Approach to Almost Parsing. Computational Linguistics, 25(2):238-265, June.
    • (1999) Computational Linguistics , vol.25 , Issue.25 , pp. 238-265
    • Bangalore, S.1    Joshi, A.K.2
  • 5
    • 85119101586 scopus 로고    scopus 로고
    • The importance of su-pertagging for wide-coverage CCG parsing
    • Morristown, NJ, USA
    • S. Clark and J. R. Curran. 2004. The importance of su-pertagging for wide-coverage CCG parsing. In COLING, Morristown, NJ, USA.
    • (2004) COLING
    • Clark, S.1    Curran, J.R.2
  • 6
    • 37249086043 scopus 로고    scopus 로고
    • Wide-coverage efficient statistical parsing with CCG and log-linear models
    • S. Clark and J. R. Curran. 2007. Wide-Coverage Efficient Statistical Parsing with CCG and Log-Linear Models. Computational Linguistics, 33(4):493-552.
    • (2007) Computational Linguistics , vol.33 , Issue.4 , pp. 493-552
    • Clark, S.1    Curran, J.R.2
  • 8
    • 85139594775 scopus 로고    scopus 로고
    • Building deep dependency structures with a wide-coverage CCG parser
    • S. Clark, J. Hockenmaier, and M. Steedman. 2002. Building deep dependency structures with a wide-coverage CCG parser. In Proc. of ACL.
    • (2002) Proc. of ACL
    • Clark, S.1    Hockenmaier, J.2    Steedman, M.3
  • 9
    • 33746385477 scopus 로고    scopus 로고
    • Supertagging for combinatory categorial grammar
    • S. Clark. 2002. Supertagging for Combinatory Categorial Grammar. In TAG+6.
    • (2002) TAG+6
    • Clark, S.1
  • 10
    • 80053393416 scopus 로고    scopus 로고
    • Graphical models over multiple strings
    • M. Dreyer and J. Eisner. 2009. Graphical models over multiple strings. In Proc. of EMNLP.
    • (2009) Proc. of EMNLP
    • Dreyer, M.1    Eisner, J.2
  • 12
    • 84859978847 scopus 로고    scopus 로고
    • Accurate context-free parsing with combinatory categorial grammar
    • T. A. D. Fowler and G. Penn. 2010. Accurate context-free parsing with combinatory categorial grammar. In Proc. of ACL.
    • (2010) Proc. of ACL
    • Fowler, T.A.D.1    Penn, G.2
  • 15
    • 85149112297 scopus 로고    scopus 로고
    • Parsing algorithms and metrics
    • Jun
    • J. Goodman. 1996. Parsing algorithms and metrics. In Proc. of ACL, pages 177-183, Jun.
    • (1996) Proc. of ACL , pp. 177-183
    • Goodman, J.1
  • 16
    • 34748819951 scopus 로고    scopus 로고
    • CCGbank: A corpus of CCG derivations and dependency structures extracted from the penn treebank
    • J. Hockenmaier and M. Steedman. 2007. CCGbank: A corpus of CCG derivations and dependency structures extracted from the Penn Treebank. Computational Linguistics, 33(3):355-396.
    • (2007) Computational Linguistics , vol.33 , Issue.3 , pp. 355-396
    • Hockenmaier, J.1    Steedman, M.2
  • 17
    • 84859887879 scopus 로고    scopus 로고
    • Forest reranking: Discriminative parsing with non-local features
    • L. Huang. 2008. Forest Reranking: Discriminative parsing with Non-Local Features. In Proceedings of ACL08: HLT.
    • (2008) Proceedings of ACL08: HLT
    • Huang, L.1
  • 18
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. of ICML, pages 282-289.
    • (2001) Proc. of ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 21
    • 84944098666 scopus 로고    scopus 로고
    • Minimum error rate training in statistical machine translation
    • Jul
    • F. J. Och. 2003. Minimum error rate training in statistical machine translation. In Proc. of ACL, Jul.
    • (2003) Proc. of ACL
    • Och, F.J.1
  • 23
    • 80053292148 scopus 로고    scopus 로고
    • Minimum phone error and I-smoothing for improved discrimative training
    • D. Povey and P. Woodland. 2008. Minimum phone error and I-smoothing for improved discrimative training. In Proc. of ICASSP.
    • (2008) Proc. of ICASSP
    • Povey, D.1    Woodland, P.2
  • 24
    • 85078843680 scopus 로고    scopus 로고
    • Large margin hidden Markov models for automatic speech recognition
    • F. Sha and L. K. Saul. 2006. Large margin hidden Markov models for automatic speech recognition. In Proc. of NIPS.
    • (2006) Proc. of NIPS
    • Sha, F.1    Saul, L.K.2
  • 25
    • 80053375671 scopus 로고    scopus 로고
    • Dependency parsing by belief propagation
    • D. A. Smith and J. Eisner. 2008. Dependency parsing by belief propagation. In Proc. of EMNLP.
    • (2008) Proc. of EMNLP
    • Smith, D.A.1    Eisner, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.