메뉴 건너뛰기




Volumn , Issue , 2011, Pages 140-150

Domain-assisted product aspect hierarchy generation: Towards hierarchical organization of unstructured consumer reviews

Author keywords

[No Author keywords available]

Indexed keywords

DOMAIN KNOWLEDGE; HIERARCHICAL ORGANIZATIONS; PRODUCT SPECIFICATIONS;

EID: 80053235830     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (60)

References (46)
  • 3
    • 84893382510 scopus 로고    scopus 로고
    • Multi-document summarization of evaluative text
    • G. Carenini, R. Ng, and E. Zwart. Multi-document Summarization of Evaluative Text. ACL, 2006.
    • (2006) ACL
    • Carenini, G.1    Ng, R.2    Zwart, E.3
  • 6
    • 31144459206 scopus 로고    scopus 로고
    • Learning concept hierarchies from text corpora using formal concept analysis
    • P. Cimiano, A. Hotho, and S. Staab. Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis. Artificial Intelligence, 2005.
    • (2005) Artificial Intelligence
    • Cimiano, P.1    Hotho, A.2    Staab, S.3
  • 8
    • 85048736608 scopus 로고    scopus 로고
    • Mine the easy, classify the hard: A semi-supervised approach to automatic sentiment classification
    • S. Dasgupta and V. Ng. Mine the Easy, Classify the Hard: A Semi-supervised Approach to Automatic Sentiment Classification. ACL, 2009.
    • (2009) ACL
    • Dasgupta, S.1    Ng, V.2
  • 10
    • 34548023171 scopus 로고    scopus 로고
    • A publicly available lexical resource for opinion mining
    • A. Esuli and F. Sebastiani. A Publicly Available Lexical Resource for Opinion Mining. LREC, 2006.
    • (2006) LREC
    • Esuli, A.1    Sebastiani, F.2
  • 13
    • 47749130308 scopus 로고    scopus 로고
    • Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization
    • A. Goldberg and X. Zhu. Seeing Stars When There Aren't Many Stars: Graph-based Semi-supervised Learning for Sentiment Categorization. ACL, 2006.
    • (2006) ACL
    • Goldberg, A.1    Zhu, X.2
  • 15
    • 12244305149 scopus 로고    scopus 로고
    • Mining and summarizing customer reviews
    • M. Hu and B. Liu. Mining and Summarizing Customer Reviews. SIGKDD, 2004.
    • (2004) SIGKDD
    • Hu, M.1    Liu, B.2
  • 16
    • 74549114844 scopus 로고    scopus 로고
    • Exploiting internal and external semantics for the clustering of short texts using world knowledge
    • X. Hu, N. Sun, C. Zhang, and T.-S. Chua Exploiting Internal and External Semantics for the Clustering of Short Texts Using World Knowledge. CIKM, 2009.
    • (2009) CIKM
    • Hu, X.1    Sun, N.2    Zhang, C.3    Chua, T.-S.4
  • 17
    • 85107227165 scopus 로고    scopus 로고
    • Determining the sentiment of opinions
    • S. Kim and E. Hovy. Determining the Sentiment of Opinions. COLING, 2004.
    • (2004) COLING
    • Kim, S.1    Hovy, E.2
  • 18
    • 33749555540 scopus 로고    scopus 로고
    • Reducing the human overhead in text categorization
    • A. C. Konig and E. Brill. Reducing the Human Overhead in Text Categorization. KDD, 2006.
    • (2006) KDD
    • Konig, A.C.1    Brill, E.2
  • 19
    • 84859906327 scopus 로고    scopus 로고
    • Semantic class learning from the web with hyponym pattern linkage graphs
    • Z. Kozareva, E. Riloff, and E. Hovy. Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs. ACL, 2008.
    • (2008) ACL
    • Kozareva, Z.1    Riloff, E.2    Hovy, E.3
  • 20
    • 78651345514 scopus 로고    scopus 로고
    • A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge
    • T. Li, Y. Zhang, and V. Sindhwani. A Non-negative Matrix Tri-factorization Approach to Sentiment Classification with Lexical Prior Knowledge. ACL, 2009.
    • (2009) ACL
    • Li, T.1    Zhang, Y.2    Sindhwani, V.3
  • 21
    • 33746036191 scopus 로고    scopus 로고
    • Opinion observer: Analyzing and comparing opinions on the web
    • B. Liu, M. Hu, and J. Cheng. Opinion Observer: Analyzing and Comparing Opinions on the Web. WWW, 2005.
    • (2005) WWW
    • Liu, B.1    Hu, M.2    Cheng, J.3
  • 22
    • 77955070729 scopus 로고    scopus 로고
    • Handbook chapter: Sentiment analysis and subjectivity
    • Marcel Dekker, Inc. New York, NY, USA
    • B. Liu. Handbook Chapter: Sentiment Analysis and Subjectivity. Handbook of Natural Language Processing. Marcel Dekker, Inc. New York, NY, USA, 2009.
    • (2009) Handbook of Natural Language Processing
    • Liu, B.1
  • 24
    • 35348882767 scopus 로고    scopus 로고
    • Topic sentiment mixture: Modeling facets and opinions in weblogs
    • Q. Mei, X. Ling, M. Wondra, H. Su, and C.X. Zhai. Topic Sentiment Mixture: Modeling Facets and Opinions in Weblogs. WWW, 2007.
    • (2007) WWW
    • Mei, Q.1    Ling, X.2    Wondra, M.3    Su, H.4    Zhai, C.X.5
  • 25
    • 83755198304 scopus 로고    scopus 로고
    • Mining user reviews: From specification to summarization
    • X. Meng and H. Wang. Mining User Reviews: from Specification to Summarization. ACL-IJCNLP, 2009.
    • (2009) ACL-IJCNLP
    • Meng, X.1    Wang, H.2
  • 27
    • 84859969714 scopus 로고    scopus 로고
    • Optimizing informativeness and readability for sentiment summarization
    • H. Nishikawa, T. Hasegawa, Y. Matsuo, and G. Kikui. Optimizing Informativeness and Readability for Sentiment Summarization. ACL, 2010.
    • (2010) ACL
    • Nishikawa, H.1    Hasegawa, T.2    Matsuo, Y.3    Kikui, G.4
  • 28
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up? Sentiment classification using machine learning techniques
    • B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment Classification using Machine Learning Techniques. EMNLP, 2002.
    • (2002) EMNLP
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 29
    • 84859895244 scopus 로고    scopus 로고
    • Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
    • B. Pang and L. Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with respect to Rating Scales. ACL, 2005.
    • (2005) ACL
    • Pang, B.1    Lee, L.2
  • 32
    • 80053270803 scopus 로고    scopus 로고
    • Extracting product features and opinions from reviews
    • A.M. Popescu and O. Etzioni. Extracting Product Features and Opinions from Reviews. HLT/EMNLP, 2005.
    • (2005) HLT/EMNLP
    • Popescu, A.M.1    Etzioni, O.2
  • 33
    • 80053230681 scopus 로고    scopus 로고
    • Unsupervised ontology induction from text
    • H. Poon and P. Domingos. Unsupervised Ontology Induction from Text. ACL, 2010.
    • (2010) ACL
    • Poon, H.1    Domingos, P.2
  • 34
    • 78751699461 scopus 로고    scopus 로고
    • Expanding domain sentiment lexicon through double propagation
    • G. Qiu, B. Liu, J. Bu, and C. Chen. Expanding Domain Sentiment Lexicon through Double Propagation. IJCAI, 2009.
    • (2009) IJCAI
    • Qiu, G.1    Liu, B.2    Bu, J.3    Chen, C.4
  • 35
    • 80053237628 scopus 로고    scopus 로고
    • Automatic generation of domain models for call centers from noisy transcriptions
    • S. Roy and L.V. Subramaniam. Automatic Generation of Domain Models for Call Centers from Noisy Transcriptions. ACL, 2009.
    • (2009) ACL
    • Roy, S.1    Subramaniam, L.V.2
  • 36
    • 69949141660 scopus 로고    scopus 로고
    • Generating a concept hierarchy for sentiment analysis
    • B. Shi and K. Chang. Generating a Concept Hierarchy for Sentiment Analysis. SMC, 2008.
    • (2008) SMC
    • Shi, B.1    Chang, K.2
  • 37
    • 51449115991 scopus 로고    scopus 로고
    • Semantic taxonomy induction from heterogenous evidence
    • R. Snow and D. Jurafsky. Semantic Taxonomy Induction from Heterogenous Evidence. ACL, 2006.
    • (2006) ACL
    • Snow, R.1    Jurafsky, D.2
  • 38
    • 57349197037 scopus 로고    scopus 로고
    • Hidden sentiment association in Chinese web opinion mining
    • Q. Su, X. Xu, H. Guo, X. Wu, X. Zhang, B. Swen, and Z. Su. Hidden Sentiment Association in Chinese Web Opinion Mining. WWW, 2008.
    • (2008) WWW
    • Su, Q.1    Xu, X.2    Guo, H.3    Wu, X.4    Zhang, X.5    Swen, B.6    Su, Z.7
  • 39
    • 84859906262 scopus 로고    scopus 로고
    • A joint model of text and aspect ratings for sentiment summarization
    • I. Titov and R. McDonald. A Joint Model of Text and Aspect Ratings for Sentiment Summarization. ACL, 2008.
    • (2008) ACL
    • Titov, I.1    McDonald, R.2
  • 40
    • 85136072040 scopus 로고    scopus 로고
    • Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews
    • P. Turney. Thumbs up or thumbs down? Semantic Orientation Applied to Unsupervised Classification of Reviews. ACL, 2002.
    • (2002) ACL
    • Turney, P.1
  • 41
    • 80053411996 scopus 로고    scopus 로고
    • Phrase dependency parsing for opinion mining
    • Y. Wu, Q. Zhang, X. Huang, and L. Wu. Phrase Dependency Parsing for Opinion Mining. ACL, 2009.
    • (2009) ACL
    • Wu, Y.1    Zhang, Q.2    Huang, X.3    Wu, L.4
  • 42
    • 80053247760 scopus 로고    scopus 로고
    • Recognizing contextual polarity in phrase-level sentiment analysis
    • T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing Contextual Polarity in Phrase-level Sentiment Analysis. HLT/EMNLP, 2005.
    • (2005) HLT/EMNLP
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 43
    • 77955275622 scopus 로고    scopus 로고
    • A metric-based framework for automatic taxonomy induction
    • H. Yang and J. Callan A Metric-based Framework for Automatic Taxonomy Induction. ACL, 2009.
    • (2009) ACL
    • Yang, H.1    Callan, J.2
  • 45
    • 29344473560 scopus 로고    scopus 로고
    • Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques
    • J. Yi, T. Nasukawa, W. Niblack, and R. Bunescu. Sentiment Analyzer: Extracting Sentiments about a Given Topic using Natural Language Processing Techniques. ICDM, 2003.
    • (2003) ICDM
    • Yi, J.1    Nasukawa, T.2    Niblack, W.3    Bunescu, R.4
  • 46
    • 34547619773 scopus 로고    scopus 로고
    • Movie review mining and summarization
    • L. Zhuang, F. Jing, and X.Y. Zhu Movie Review Mining and Summarization CIKM, 2006.
    • (2006) CIKM
    • Zhuang, L.1    Jing, F.2    Zhu, X.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.