메뉴 건너뛰기




Volumn 43, Issue 10, 2011, Pages 1095-1113

The comparison of multi-objective particle swarm optimization and NSGA II algorithm: Applications in centrifugal pumps

Author keywords

centrifugal pumps; computational fluid dynamics; multi objective optimization; NPSHr; particle swarm optimization

Indexed keywords

COMMERCIAL SOFTWARE; COMPUTATIONAL FLUID; GEOMETRICAL DESIGNS; GROUP METHOD OF DATA HANDLING; META MODEL; MULTI OBJECTIVE; MULTI OBJECTIVE PARTICLE SWARM OPTIMIZATION; MULTI-OBJECTIVE GENETIC ALGORITHM; NET POSITIVE SUCTION HEADS; NPSHR; NSGA-II; NSGA-II ALGORITHM; OPTIMAL DESIGN; PARTICLE SWARM; POLYNOMIAL NEURAL NETWORKS;

EID: 80052981145     PISSN: 0305215X     EISSN: 10290273     Source Type: Journal    
DOI: 10.1080/0305215X.2010.542811     Document Type: Article
Times cited : (83)

References (22)
  • 1
    • 33751541735 scopus 로고    scopus 로고
    • Multi-objective optimization of abrasive flow machining processes using polynomial neural networks and genetic algorithms
    • DOI 10.1080/10910340600996126, PII Q23X2L88KNL7L344
    • Ali-Tavoli, M., Nariman-Zadeh, N., Khalkhali, A. and Mehran, M., 2006. Multi-objective optimization of abrasive flow machining processes using polynomial neural networks and genetic algorithms. Machining Science and Technology, 10 (1), 491-510. (Pubitemid 44837693)
    • (2006) Machining Science and Technology , vol.10 , Issue.4 , pp. 491-510
    • Ali-Tavoli, M.1    Nariman-Zadeh, N.2    Khakhali, A.3    Mehran, M.4
  • 2
    • 36249031629 scopus 로고    scopus 로고
    • Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms
    • DOI 10.1016/j.enconman.2007.06.002, PII S019689040700163X
    • Amanifard, N., Nariman-Zadeh, N., Borji, M., Khalkhali, A. and Habibdoust, A., 2008. Modeling and Pareto optimization of heat transfer and flow coefficients in micro channels using GMDH type neural networks and genetic algorithms. Energy Conversion and Management, 49, 311-325. (Pubitemid 350137547)
    • (2008) Energy Conversion and Management , vol.49 , Issue.2 , pp. 311-325
    • Amanifard, N.1    Nariman-Zadeh, N.2    Borji, M.3    Khalkhali, A.4    Habibdoust, A.5
  • 4
    • 70449602576 scopus 로고    scopus 로고
    • Multi-objective optimization of engineering systems using game theory and particle swarm optimization
    • Annamdas, K.K. and Rao S.S., 2009. Multi-objective optimization of engineering systems using game theory and particle swarm optimization. Engineering Optimization, 41 (8), 737-752.
    • (2009) Engineering Optimization , vol.41 , Issue.8 , pp. 737-752
    • Annamdas, K.K.1    Rao, S.S.2
  • 5
    • 0015035795 scopus 로고
    • System identification, a survey
    • Astrom, K.J. and Eykhoff, P., 1971. System identification, a survey. Automatica, 7 (2), 123-62.
    • (1971) Automatica , vol.7 , Issue.2 , pp. 123-62
    • Astrom, K.J.1    Eykhoff, P.2
  • 6
    • 80052991043 scopus 로고    scopus 로고
    • Auto Blade user guide, Brussels, Belgium
    • Auto Blade user guide, 2009. Numeca International, Brussels, Belgium.
    • (2009) Numeca International
  • 10
    • 84947807745 scopus 로고    scopus 로고
    • Comparison between genetic algorithms and particle swarm optimization
    • May, Anchorage, AK. Lecture Notes in Computer Science, Berlin: Springer
    • Eberhart, R.C. and Shi,Y., 1998. Comparison between genetic algorithms and particle swarm optimization. Proceedings of the IEEE international conference on evolutionary computation.May, Anchorage,AK. Lecture Notes in Computer Science, Vol. 1447, Berlin: Springer, 611-616.
    • (1998) Proceedings of the IEEE International Conference on Evolutionary Computation , vol.1447 , pp. 611-616
    • Eberhart, R.C.1    Shi, Y.2
  • 13
    • 3142781424 scopus 로고    scopus 로고
    • A multi-objective algorithm based upon particle swarm optimization and efficient data structure and turbulence
    • 2-4 September, Birmingham, UK
    • Fieldsend, J.E. and Singh, S., 2002. A multi-objective algorithm based upon particle swarm optimization and efficient data structure and turbulence. Workshop on computational intelligence, 2-4 September, Birmingham, UK, 37-44.
    • (2002) Workshop on Computational Intelligence , pp. 37-44
    • Fieldsend, J.E.1    Singh, S.2
  • 14
    • 84901470581 scopus 로고    scopus 로고
    • Multi-objective optimization using dynamic neighborhood particle swarm optimization
    • 12-17 May, Honolulu, HI, USA. Piscataway, NJ: IEEE Service Center
    • Hu X., and Eberhart R. C., 2002. Multi-objective optimization using dynamic neighborhood particle swarm optimization. Proceedings of the IEEE world congress on computational intelligence, 12-17 May, Honolulu, HI, USA. Piscataway, NJ: IEEE Service Center, 1677-1681.
    • (2002) Proceedings of the IEEE World Congress on Computational Intelligence , pp. 1677-1681
    • Hu, X.1    Eberhart, R.C.2
  • 16
    • 49749110448 scopus 로고    scopus 로고
    • Enhanced multi-objective particle swarm optimization in combination with adaptive weighted gradient-based searching
    • Izui, K., Nishiwaki, S., Yoshimura, M., Nakamura, M. and Renaud, J.E., 2008. Enhanced multi-objective particle swarm optimization in combination with adaptive weighted gradient-based searching. Engineering Optimization, 40 (9), 789-804.
    • (2008) Engineering Optimization , vol.40 , Issue.9 , pp. 789-804
    • Izui, K.1    Nishiwaki, S.2    Yoshimura, M.3    Nakamura, M.4    Renaud, J.E.5
  • 17
    • 70349469254 scopus 로고    scopus 로고
    • Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA)
    • Jamali, A., Hajiloo, A. and Nariman-zadeh, N., 2010. Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA). Expert Systems with Applications, 37, 401-413.
    • (2010) Expert Systems with Applications , vol.37 , pp. 401-413
    • Jamali, A.1    Hajiloo, A.2    Nariman-Zadeh, N.3
  • 18
    • 0029535737 scopus 로고
    • Particle swarms optimization
    • 27 November-December, Perth, Australia. Washington, DC: IEEE Computer Society
    • Kennedy, J. and Eberhart, R.C., 1995. Particle swarms optimization. Proceedings of the IEEE international conference on neural networks, vol. IV, 27 November-December, Perth, Australia. Washington, DC: IEEE Computer Society, 1942-1948.
    • (1995) Proceedings of the IEEE International Conference on Neural Networks , vol.4 , pp. 1942-1948
    • Kennedy, J.1    Eberhart, R.C.2
  • 22
    • 84942162725 scopus 로고    scopus 로고
    • Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)
    • 24-26 April, Indianapolis, IN, USA. Piscataway, NJ: IEEE Service Center
    • Mostaghim, S. and Teich, J., 2003. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). Proceedings of the IEEE swarm intelligence symposium, 24-26April, Indianapolis, IN, USA. Piscataway, NJ: IEEE Service Center, 26-33.
    • (2003) Proceedings of the IEEE Swarm Intelligence Symposium , pp. 26-33
    • Mostaghim, S.1    Teich, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.