메뉴 건너뛰기




Volumn 45, Issue 2, 2012, Pages 897-907

Supervised learning of Gaussian mixture models for visual vocabulary generation

Author keywords

Bags of visual words; Dictionary generation; Expectation Maximization algorithm; Supervised Gaussian mixture model

Indexed keywords

CONVEX COMBINATIONS; DATA FITTINGS; DATA SETS; DESCRIPTORS; DICTIONARY GENERATION; EXPECTATION-MAXIMIZATION ALGORITHMS; GAUSSIAN MIXTURE MODEL; K-MEANS; K-MEANS ALGORITHM; STATE OF THE ART; SUM OF SQUARES; TRAINING DATA; UNSUPERVISED CLUSTERING ALGORITHM; VISUAL VOCABULARIES; VISUAL WORD;

EID: 80052967000     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.07.021     Document Type: Article
Times cited : (41)

References (35)
  • 3
    • 0036681029 scopus 로고    scopus 로고
    • Indexing chromatic and achromatic patterns for content-based colour image retrieval
    • DOI 10.1016/S0031-3203(01)00162-5, PII S0031320301001625
    • G. Qiu Indexing chromatic and achromatic patterns for content-based colour image retrieval Pattern Recognition 35 8 2002 1675 1686 (Pubitemid 34557571)
    • (2002) Pattern Recognition , vol.35 , Issue.8 , pp. 1675-1686
    • Qiu, G.1
  • 5
    • 2542418250 scopus 로고    scopus 로고
    • Revealing the connoted visual code: A new approach to video classification
    • R. Cavet, S. Volmer, E. Leopold, J. Kindermann, and G. Paaß Revealing the connoted visual code: a new approach to video classification Computers & Graphics 28 3 2004 361 369
    • (2004) Computers & Graphics , vol.28 , Issue.3 , pp. 361-369
    • Cavet, R.1    Volmer, S.2    Leopold, E.3    Kindermann, J.4    Paaß, G.5
  • 6
    • 33745934686 scopus 로고    scopus 로고
    • Creating efficient codebooks for visual recognition
    • DOI 10.1109/ICCV.2005.66, 1541309, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
    • F. Jurie, and B. Triggs Creating efficient codebooks for visual recognition Proceedings of the International Conference on Computer Vision (ICCV 2005) vol. 1 2005 604 610 (Pubitemid 44055011)
    • (2005) Proceedings of the IEEE International Conference on Computer Vision , vol.I , pp. 604-610
    • Jurie, F.1    Triggs, B.2
  • 14
    • 63549108762 scopus 로고    scopus 로고
    • Scene categorization with multiscale category specific visual words
    • J. Qin, N.H.C. Yung, Scene categorization with multiscale category specific visual words, in: Proceedings of SPIE 7252, 72520N.
    • Proceedings of SPIE 7252
    • Qin, J.1    Yung, N.H.C.2
  • 20
    • 84864059224 scopus 로고    scopus 로고
    • Fast discriminative visual codebooks using randomized clustering forests
    • B. Schölkopf, J. Platt, T. Hoffman, MIT Press Cambridge, MA
    • F. Moosmann, B. Triggs, and F. Jurie Fast discriminative visual codebooks using randomized clustering forests B. Schölkopf, J. Platt, T. Hoffman, Advances in Neural Information Processing Systems (NIPS 2007) 2007 MIT Press Cambridge, MA 985 992
    • (2007) Advances in Neural Information Processing Systems (NIPS 2007) , pp. 985-992
    • Moosmann, F.1    Triggs, B.2    Jurie, F.3
  • 22
    • 80052961118 scopus 로고    scopus 로고
    • A fast globally supervised learning algorithm for Gaussian mixture models
    • H. Lu, A. Zhou, Springer Berlin, Heidelberg
    • J. Ma, and W. Gao A fast globally supervised learning algorithm for Gaussian mixture models H. Lu, A. Zhou, Web-Age Information Management, Lecture Notes in Computer Science vol. 1846 2000 Springer Berlin, Heidelberg 449 454
    • (2000) Web-Age Information Management, Lecture Notes in Computer Science , vol.1846 , pp. 449-454
    • Ma, J.1    Gao, W.2
  • 23
    • 80052967225 scopus 로고    scopus 로고
    • Semi-supervised training of Gaussian mixture models by conditional entropy
    • NSF 0703624
    • J. Huang, M. Johnson, Semi-supervised training of Gaussian mixture models by conditional entropy, in: Proceedings of Interspeech, NSF 0703624, 2010.
    • (2010) Proceedings of Interspeech
    • Huang, J.1    Johnson, M.2
  • 25
    • 0032165624 scopus 로고    scopus 로고
    • The supervised learning Gaussian mixture model
    • J. Ma, and W. Gao The supervised learning Gaussian mixture model Computer Science and Technology 13 1998 471 474
    • (1998) Computer Science and Technology , vol.13 , pp. 471-474
    • Ma, J.1    Gao, W.2
  • 26
    • 33745820875 scopus 로고    scopus 로고
    • Improving Bag-of-Keypoints Image Categorisation: Generative Models and pdf-Kernels
    • University of Southampton
    • J. Farquhar, S. Szedmak, H. Meng, J. Shawe-Taylor, Improving Bag-of-Keypoints Image Categorisation: Generative Models and pdf-Kernels, Technical Report, University of Southampton.
    • Technical Report
    • Farquhar, J.1    Szedmak, S.2    Meng, H.3    Shawe-Taylor, J.4
  • 27
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • DOI 10.1109/ICCV.2005.171, 1544935, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
    • J. Winn, A. Criminisi, and T. Minka Object categorization by learned universal visual dictionary Proceedings of the International Conference on Computer Vision (ICCV 2005) vol. 2 2005 1800 1807 (Pubitemid 44042395)
    • (2005) Proceedings of the IEEE International Conference on Computer Vision , vol.II , pp. 1800-1807
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 29
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • R.F.L. Fei-Fei, P. Perona, Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories, in: IEEE, CVPR 2004, Workshop on Generative-Model Based Vision, 2004.
    • (2004) IEEE, CVPR 2004, Workshop on Generative-Model Based Vision
    • Fei-Fei, R.F.L.1    Perona, P.2
  • 30
    • 0032122727 scopus 로고    scopus 로고
    • Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates
    • PII S1045922798044555
    • D. Ormoneit, and V. Tresp Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates IEEE Transactions on Neural Networks 9 4 1998 639 650 (Pubitemid 128750025)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.4 , pp. 639-650
    • Ormoneit, D.1    Tresp, V.2
  • 31
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm Royal Statistical Society 39 1 1977 1 38
    • (1977) Royal Statistical Society , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 32
    • 9644260534 scopus 로고    scopus 로고
    • Scale and affine invariant interest point detectors
    • K. Mikolajczyk, and C. Schmid Scale and affine invariant interest point detectors Computer Vision 60 2004 63 86
    • (2004) Computer Vision , vol.60 , pp. 63-86
    • Mikolajczyk, K.1    Schmid, C.2
  • 33
    • 80052970495 scopus 로고    scopus 로고
    • Color Descriptor Software from University of Amsterdam. URL
    • Color Descriptor Software from University of Amsterdam. URL 〈 http://staff.science.uva.nl/ksande/research/colordescriptors/ 〉.
  • 34
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.