메뉴 건너뛰기




Volumn , Issue , 2010, Pages 2305-2312

Probabilistic models for supervised dictionary learning

Author keywords

[No Author keywords available]

Indexed keywords

BAG-OF-VISUAL-WORDS; BENCHMARK DATASETS; DICTIONARY LEARNING; GAUSSIAN MIXTURE MODEL; IMAGE CATEGORIZATION; K-MEANS; LOGISTIC REGRESSION MODELS; PROBABILISTIC FRAMEWORK; PROBABILISTIC MODELS; SPATIAL INFORMATIONS; UNSUPERVISED CLUSTERING TECHNIQUE;

EID: 77956002336     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539915     Document Type: Conference Paper
Times cited : (31)

References (27)
  • 1
    • 85161981998 scopus 로고    scopus 로고
    • Supervised topic models
    • 2
    • D. Blei and J. McAuliffe. Supervised topic models. NIPS, 2008. 2
    • (2008) NIPS
    • Blei, D.1    McAuliffe, J.2
  • 2
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • 2, 3
    • D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. JMLR, 2003. 2, 3
    • (2003) JMLR
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 3
    • 79951765819 scopus 로고    scopus 로고
    • Efficient bounds for the softmax function, applications to inference in hybrid models
    • 4
    • G. Bouchard. Efficient bounds for the softmax function, applications to inference in hybrid models. In Proc. NIPS, 2007. 4
    • Proc. NIPS, 2007
    • Bouchard, G.1
  • 6
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • 6
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst., 2007. 6
    • (2007) Comput. Vis. Image Underst.
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 7
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • 1, 2
    • L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In Proc. CVPR, 2005. 1, 2
    • (2005) Proc. CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 8
    • 72449174382 scopus 로고    scopus 로고
    • Localizing objects with smart dictionaries
    • 1, 2, 6, 7
    • B. Fulkerson, A. Vedaldi, and S. Soatto. Localizing objects with smart dictionaries. In Proc. ECCV, 2008. 1, 2, 6, 7
    • (2008) Proc. ECCV
    • Fulkerson, B.1    Vedaldi, A.2    Soatto, S.3
  • 9
    • 84864043302 scopus 로고    scopus 로고
    • Sparse representation for signal classification
    • 2, 5
    • K. Huang and S. Aviyente. Sparse representation for signal classification. NIPS, 2007. 2, 5
    • (2007) NIPS
    • Huang, K.1    Aviyente, S.2
  • 10
    • 59349100009 scopus 로고    scopus 로고
    • Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval
    • 1
    • Y.-G. Jiang and C.-W. Ngo. Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval. Comput. Vis. Image Underst., 2009. 1
    • (2009) Comput. Vis. Image Underst.
    • Jiang, Y.-G.1    Ngo, C.-W.2
  • 12
    • 33745934686 scopus 로고    scopus 로고
    • Creating efficient codebooks for visual recognition
    • 1
    • F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. In Proc. ICCV, 2005. 1
    • Proc. ICCV, 2005
    • Jurie, F.1    Triggs, B.2
  • 13
    • 70049090214 scopus 로고    scopus 로고
    • DiscLDA: Discriminative learning for dimensionality reduction and classification
    • 5
    • S. Lacoste-Julien, F. Sha, and M. Jordan. DiscLDA: Discriminative learning for dimensionality reduction and classification. NIPS, 2008. 5
    • (2008) NIPS
    • Lacoste-Julien, S.1    Sha, F.2    Jordan, M.3
  • 14
    • 67349266616 scopus 로고    scopus 로고
    • Supervised learning of quantizer codebooks by information loss minimization
    • 2, 6
    • S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by information loss minimization. TPAMI, 2009. 2, 6
    • (2009) TPAMI
    • Lazebnik, S.1    Raginsky, M.2
  • 15
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 1, 2, 4, 6, 7
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proc. CVPR, 2006. 1, 2, 4, 6, 7
    • Proc. CVPR, 2006
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 16
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • 6
    • D. Lowe. Object recognition from local scale-invariant features. In Proc. ICCV, 1999. 6
    • Proc. ICCV, 1999
    • Lowe, D.1
  • 20
    • 84864059224 scopus 로고    scopus 로고
    • Fast discriminative visual codebooks using randomized clustering forests
    • 2
    • F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using randomized clustering forests. NIPS, 2007. 2
    • (2007) NIPS
    • Moosmann, F.1    Triggs, B.2    Jurie, F.3
  • 21
    • 45349097640 scopus 로고    scopus 로고
    • Universal and adapted vocabularies for generic visual categorization
    • 2
    • F. Perronnin. Universal and adapted vocabularies for generic visual categorization. TPAMI, 2008. 2
    • (2008) TPAMI
    • Perronnin, F.1
  • 23
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • 1
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In Proc. ICCV, 2003. 1
    • Proc. ICCV, 2003
    • Sivic, J.1    Zisserman, A.2
  • 24
    • 70450178502 scopus 로고    scopus 로고
    • Simultaneous image classification and annotation
    • 1, 2, 3, 4
    • C. Wang, D. Blei, and L. Fei-Fei. Simultaneous image classification and annotation. In Proc. CVPR, 2009. 1, 2, 3, 4
    • Proc. CVPR, 2009
    • Wang, C.1    Blei, D.2    Fei-Fei, L.3
  • 25
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • 1, 2
    • J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In Proc. ICCV, 2005. 1, 2
    • Proc. ICCV, 2005.
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 26
    • 51949103737 scopus 로고    scopus 로고
    • Unifying discriminative visual codebook generation with classifier training for object category recognition
    • 2
    • L. Yang, R. Jin, R. Sukthankar, and F. Jurie. Unifying discriminative visual codebook generation with classifier training for object category recognition. In Proc. CVPR, 2008. 2
    • Proc. CVPR, 2008
    • Yang, L.1    Jin, R.2    Sukthankar, R.3    Jurie, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.