-
1
-
-
0000353178
-
A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
-
L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41(1):164-171, 1970.
-
(1970)
The Annals of Mathematical Statistics
, vol.41
, Issue.1
, pp. 164-171
-
-
Baum, L.1
Petrie, T.2
Soules, G.3
Weiss, N.4
-
3
-
-
77953199188
-
A hybrid generative/discriminative classification framework based on free energy terms
-
A. Cristani, U. Castellani, V. Murino, and N. Jojic. A hybrid generative/discriminative classification framework based on free energy terms. In ICCV, 2009.
-
(2009)
ICCV
-
-
Cristani, A.1
Castellani, U.2
Murino, V.3
Jojic, N.4
-
4
-
-
11244330002
-
Probabilistic latent semantic analysis
-
T. Hofmann. Probabilistic latent semantic analysis. In UAI, pages 289-296, 1999.
-
(1999)
UAI
, pp. 289-296
-
-
Hofmann, T.1
-
5
-
-
39749152840
-
Hybrid generativediscriminative visual categorization
-
A. Holub, M. Welling, and P. Perona. Hybrid generativediscriminative visual categorization. International Journal of Computer Vision, 77(1):239-258, 2008.
-
(2008)
International Journal of Computer Vision
, vol.77
, Issue.1
, pp. 239-258
-
-
Holub, A.1
Welling, M.2
Perona, P.3
-
7
-
-
84898982939
-
Exploiting generative models in discriminative classifiers
-
T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In NIPS, pages 487-493, 1999.
-
(1999)
NIPS
, pp. 487-493
-
-
Jaakkola, T.1
Haussler, D.2
-
9
-
-
0033225865
-
Introduction to variational methods for graphical models
-
M. Jordan, Z. Ghahramani, J. T., and S. L. Introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
-
10
-
-
33845597672
-
Principled hybrids of generative and discriminative models
-
IEEE
-
J. Lasserre, C. Bishop, and T. Minka. Principled hybrids of generative and discriminative models. In CVPR, volume 1, pages 87-94. IEEE, 2006.
-
(2006)
CVPR
, vol.1
, pp. 87-94
-
-
Lasserre, J.1
Bishop, C.2
Minka, T.3
-
11
-
-
78650975832
-
Learning parts-based representation for face transition
-
X. Li, L. Wang, H. Liu, and Y. Liu. Learning parts-based representation for face transition. In ACM Multimedia, 2010.
-
(2010)
ACM Multimedia
-
-
Li, X.1
Wang, L.2
Liu, H.3
Liu, Y.4
-
12
-
-
77956003200
-
Bimodal gender recognition from face and fingerprint
-
X. Li, X. Zhan, F. Fu, and Y. Liu. Bimodal gender recognition from face and fingerprint. In CVPR, 2010.
-
(2010)
CVPR
-
-
Li, X.1
Zhan, X.2
Fu, F.3
Liu, Y.4
-
13
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
-
(2004)
International Journal of Computer Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.1
-
14
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models, 89:355-368, 1998.
-
(1998)
Learning in Graphical Models
, vol.89
, pp. 355-368
-
-
Neal, R.1
Hinton, G.2
-
15
-
-
78651083865
-
Free energy score space
-
A. Perina, M. Cristani, U. Castellani, V. Murino, and N. Jojic. Free energy score space. In NIPS, pages 1428-1436, 2009.
-
(2009)
NIPS
, pp. 1428-1436
-
-
Perina, A.1
Cristani, M.2
Castellani, U.3
Murino, V.4
Jojic, N.5
-
16
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications inspeech recognition
-
L. Rabiner. A tutorial on hidden Markov models and selected applications inspeech recognition. Proceeding of the IEEE, 77(2):257-286, 1989.
-
(1989)
Proceeding of the IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.1
-
17
-
-
84898946653
-
Classification with hybrid generative/discriminative models
-
R. Raina, Y. Shen, A. Ng, and A. McCallum. Classification with hybrid generative/discriminative models. In NIPS, volume 16, 2004.
-
(2004)
NIPS
, vol.16
-
-
Raina, R.1
Shen, Y.2
Ng, A.3
McCallum, A.4
-
18
-
-
22044444083
-
Multiple cause vector quantization
-
D. Ross and R. Zemel. Multiple cause vector quantization. In NIPS, pages 1041-1048, 2003.
-
(2003)
NIPS
, pp. 1041-1048
-
-
Ross, D.1
Zemel, R.2
-
19
-
-
84898996216
-
Speech recognition using SVMs
-
N. Smith and M. Gales. Speech recognition using SVMs. In NIPS, volume 25, 2002.
-
(2002)
NIPS
, vol.25
-
-
Smith, N.1
Gales, M.2
-
20
-
-
0036780246
-
A new discriminative kernel from probabilistic models
-
K. Tsuda, M. Kawanabe, G. Ratsch, S. Sonnenburg, and K. Muller. A new discriminative kernel from probabilistic models. Neural Computation, 14(10):2397-2414, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.10
, pp. 2397-2414
-
-
Tsuda, K.1
Kawanabe, M.2
Ratsch, G.3
Sonnenburg, S.4
Muller, K.5
-
21
-
-
1642338802
-
Marginalized kernels for biological sequences
-
K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences. Bioinformatics, 18 (Suppl 1): S268, 2002.
-
(2002)
Bioinformatics
, vol.18
, Issue.1 SUPPL.
-
-
Tsuda, K.1
Kin, T.2
Asai, K.3
-
23
-
-
84950432017
-
A monte carlo implementation of the em algorithm and the poor man's data augmentation algorithms
-
G. Wei and M. Tanner. A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association, 85(411):699-704, 1990.
-
(1990)
Journal of the American Statistical Association
, vol.85
, Issue.411
, pp. 699-704
-
-
Wei, G.1
Tanner, M.2
-
24
-
-
70049109634
-
Maximum margin supervised topic models for regression and classification
-
ACM
-
J. Zhu, A. Ahmed, and E. Xing. Maximum Margin Supervised Topic Models for Regression and Classification. In ICML, volume 382. ACM, 2009.
-
(2009)
ICML
, vol.382
-
-
Zhu, J.1
Ahmed, A.2
Xing, E.3
|