메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2897-2902

Robust and efficient regularized boosting using total bregman divergence

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGY; COMPUTER VISION; EVOLUTIONARY ALGORITHMS; IMAGE ENHANCEMENT; LEARNING SYSTEMS; MEDICAL IMAGING; NUMERICAL METHODS;

EID: 80052884524     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2011.5995686     Document Type: Conference Paper
Times cited : (5)

References (19)
  • 1
    • 80052889561 scopus 로고    scopus 로고
    • A conic section classifier and its application to image datasets
    • 2902
    • A. Banerjee and et al. A conic section classifier and its application to image datasets. IEEE CVPR, 2006. 2902
    • (2006) IEEE CVPR
    • Banerjee, A.1
  • 2
    • 33745124741 scopus 로고    scopus 로고
    • Object class recognition by boosting a part based model
    • 2897
    • A. Bar-Hillel, T. Hertz, and D. Weinshall. Object class recognition by boosting a part based model. IEEE CVPR, pages 702-709, 2005. 2897
    • (2005) IEEE CVPR , pp. 702-709
    • Bar-Hillel, A.1    Hertz, T.2    Weinshall, D.3
  • 4
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • 2897, 2898, 2900
    • A. Demiriz and et al. Linear programming boosting via column generation. Mach. Learn., 2002. 2897, 2898, 2900
    • (2002) Mach. Learn.
    • Demiriz, A.1
  • 5
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • 2898
    • T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn., 2000. 2898
    • (2000) Mach. Learn.
    • Dietterich, T.G.1
  • 6
    • 84912138416 scopus 로고    scopus 로고
    • Feature mining for image classification
    • 2897
    • P. Dollar, Z. Tu, H. Tao, and S. Belongie. Feature mining for image classification. IEEE CVPR, pages 1-8, 2007. 2897
    • (2007) IEEE CVPR , pp. 1-8
    • Dollar, P.1    Tu, Z.2    Tao, H.3    Belongie, S.4
  • 8
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • 2898
    • Y. Freund. An adaptive version of the boost by majority algorithm. Mach. Learn., 43:293-318, 2001. 2898
    • (2001) Mach. Learn. , vol.43 , pp. 293-318
    • Freund, Y.1
  • 9
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • 2897
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Ann. Statist., pages 337-374, 2000. 2897
    • (2000) Ann. Statist. , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 7044260966 scopus 로고    scopus 로고
    • Unbiased diffeomorphic atlas construction for computational anatomy
    • 2901
    • S. Joshi and et al. Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 2004. 2901
    • (2004) NeuroImage
    • Joshi, S.1
  • 11
    • 80052908394 scopus 로고    scopus 로고
    • Large margin pursuit for a conic section classifier
    • 2900, 2901, 2902
    • S. Kodipaka and et al. Large margin pursuit for a conic section classifier. IEEE CVPR, 2008. 2900, 2901, 2902
    • (2008) IEEE CVPR
    • Kodipaka, S.1
  • 12
    • 80052914928 scopus 로고    scopus 로고
    • Total Bregman divergence and its applications to shape retrieval
    • 2898
    • M. Liu and et al. Total Bregman divergence and its applications to shape retrieval. IEEE CVPR, 2010. 2898
    • (2010) IEEE CVPR
    • Liu, M.1
  • 13
    • 34548409688 scopus 로고    scopus 로고
    • Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
    • 2900, 2901
    • D. S. Marcus and et al. Open Access Series of Imaging Studies (OASIS): Cross-Sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults. J. Cogn. Neurosci., 19:1498-1507, 2007. 2900, 2901
    • (2007) J. Cogn. Neurosci. , vol.19 , pp. 1498-1507
    • Marcus, D.S.1
  • 14
    • 80052901992 scopus 로고    scopus 로고
    • Implicit hierarchical boosting for multi-view object detection
    • 2897
    • X. Perrotton and et al. Implicit hierarchical boosting for multi-view object detection. IEEE CVPR, 2010. 2897
    • (2010) IEEE CVPR
    • Perrotton, X.1
  • 15
    • 80052882770 scopus 로고    scopus 로고
    • Regularized multiclass semi-supervised boosting
    • 2897
    • A. Saffari, C. Leistner, and H. Bischof. Regularized multiclass semi-supervised boosting. IEEE CVPR, 2009. 2897
    • (2009) IEEE CVPR
    • Saffari, A.1    Leistner, C.2    Bischof, H.3
  • 16
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • 2897
    • R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Mach. Learn., 37(3):297-336, 1999. 2897
    • (1999) Mach. Learn. , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.1    Singer, Y.2
  • 17
    • 80052871671 scopus 로고    scopus 로고
    • Total Bregman divergence and its applications to DTI analysis
    • 2898
    • B. C. Vemuri and et al. Total Bregman divergence and its applications to DTI analysis. IEEE TMI, 2010. 2898
    • (2010) IEEE TMI
    • Vemuri, B.C.1
  • 18
    • 77951197621 scopus 로고    scopus 로고
    • Entropy regularized LPBoost
    • 2898, 2899, 2900, 2901
    • M. K. Warmuth and et al. Entropy regularized LPBoost. Int. Conf. Alg. Learn. Theory, 2008. 2898, 2899, 2900, 2901
    • (2008) Int. Conf. Alg. Learn. Theory
    • Warmuth, M.K.1
  • 19
    • 56749095673 scopus 로고    scopus 로고
    • Boosting algorithms for maximizing the soft margin
    • 2898
    • M. K. Warmuth, K. A. Glocer, and G. Raetsch. Boosting algorithms for maximizing the soft margin. NIPS, 2007. 2898
    • (2007) NIPS
    • Warmuth, M.K.1    Glocer, K.A.2    Raetsch, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.