메뉴 건너뛰기




Volumn 50, Issue 13, 2011, Pages 1329-1337

New strategies for predicting parison dimensions in extrusion blow molding

Author keywords

Blow molding; Finite element simulation; Neural network modeling; Parison formation

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DIAMETER DISTRIBUTIONS; EXTRUSION BLOW MOLDING; FINITE ELEMENT SIMULATIONS; NEURAL NETWORK MODELING; NEW STRATEGY; PARISON FORMATION; PROCESSING CONDITION; THICKNESS DISTRIBUTIONS; THICKNESS SWELL;

EID: 80052839283     PISSN: 03602559     EISSN: 15256111     Source Type: Journal    
DOI: 10.1080/03602559.2011.584234     Document Type: Article
Times cited : (9)

References (20)
  • 1
    • 0033312139 scopus 로고    scopus 로고
    • Numerical simulations of annular extrudate swell using various types of viscoelastic models
    • Otsuki, Y.; Kajiwara, T.; Funatsu, K. Numerical simulations of annular extrudate swell using various types of viscoelastic models. Polym. Eng. Sci. 1999, 39 (10), 1969-1981.
    • (1999) Polym. Eng. Sci. , vol.39 , Issue.10 , pp. 1969-1981
    • Otsuki, Y.1    Kajiwara, T.2    Funatsu, K.3
  • 2
    • 0034246356 scopus 로고    scopus 로고
    • Overall numerical simulation of extrusion blow molding process
    • Tanifuji, S.I.; Kikuchi, T.; Takimoto, J.I.; Koyama, K. Overall numerical simulation of extrusion blow molding process. Polym. Eng. Sci. 2000, 40 (8), 1878-1893.
    • (2000) Polym. Eng. Sci. , vol.40 , Issue.8 , pp. 1878-1893
    • Tanifuji, S.I.1    Kikuchi, T.2    Takimoto, J.I.3    Koyama, K.4
  • 3
    • 33846522878 scopus 로고    scopus 로고
    • A comprehensive experimental study and numerical modeling of parison formation in extrusion blow molding
    • Yousefi, A.M.; Collins, P.; Chang, S.; DiRaddo, R.W. A comprehensive experimental study and numerical modeling of parison formation in extrusion blow molding. Polym. Eng. Sci. 2007, 47 (1), 1-13.
    • (2007) Polym. Eng. Sci. , vol.47 , Issue.1 , pp. 1-13
    • Yousefi, A.M.1    Collins, P.2    Chang, S.3    DiRaddo, R.W.4
  • 4
    • 33846326313 scopus 로고    scopus 로고
    • Annular extrudate swell of pseudoplastic and viscoplastic fluids
    • E. Annular extrudate swell of pseudoplastic and viscoplastic fluids. J. Non-Newtonian Fluid Mech. 2007, 141 (1-2), 138-147.
    • (2007) J. Non-Newtonian Fluid Mech , vol.141 , Issue.1-2 , pp. 138-147
  • 5
    • 60349130956 scopus 로고    scopus 로고
    • Modeling of complex parison formation in extrusion blow molding: Effect of medium to large die heads and fuel tank geometry
    • Yousefi, A.M.; Atsbha, H. Modeling of complex parison formation in extrusion blow molding: Effect of medium to large die heads and fuel tank geometry. Polym. Eng. Sci. 2009, 49 (2), 229-239.
    • (2009) Polym. Eng. Sci. , vol.49 , Issue.2 , pp. 229-239
    • Yousefi, A.M.1    Atsbha, H.2
  • 6
    • 60349130153 scopus 로고    scopus 로고
    • A modeling approach to the effect of resin characteristics on parison formation in extrusion blow molding
    • Yousefi, A.M.; Doelder, J.D.; Rainville, M.-A.; Koppi, K.A. A modeling approach to the effect of resin characteristics on parison formation in extrusion blow molding. Polym. Eng. Sci. 2009, 49 (2), 251-263.
    • (2009) Polym. Eng. Sci. , vol.49 , Issue.2 , pp. 251-263
    • Yousefi, A.M.1    Doelder, J.D.2    Rainville, M.-A.3    Koppi, K.A.4
  • 7
    • 33847148432 scopus 로고    scopus 로고
    • Optimization for injection molding process conditions of the refrigeratory top cover usingcombination method of artificial neural network and genetic algorithms
    • Shen, C.Y.; Wang, L.X.; Cao, W.; Wu, J.X. Optimization for injection molding process conditions of the refrigeratory top cover usingcombination method of artificial neural network and genetic algorithms. Polym. Plast. Technol. Eng. 2007, 46 (2), 105-112.
    • (2007) Polym. Plast. Technol. Eng. , vol.46 , Issue.2 , pp. 105-112
    • Shen, C.Y.1    Wang, L.X.2    Cao, W.3    Wu, J.X.4
  • 8
    • 34548448497 scopus 로고    scopus 로고
    • Construction and analysis in combining the Taguchi method and the Back Propagation Neural Network in the PEEK injection molding process
    • Kuo, C.F.J.; Su, T.L.; Li, Y.C. Construction and analysis in combining the Taguchi method and the Back Propagation Neural Network in the PEEK injection molding process. Polym. Plast. Technol. Eng.2007, 46 (9), 841-848.
    • (2007) Polym. Plast. Technol. Eng. , vol.46 , Issue.9 , pp. 841-848
    • Kuo, C.F.J.1    Su, T.L.2    Li, Y.C.3
  • 9
    • 72549101386 scopus 로고    scopus 로고
    • Study on injection molding parameters for thin-shell plastic parts using a neural network-based approach
    • Lin, J.C.; Yang, Y.K.; Hsiao, Y.H.; Jeng, M.C. Study on injection molding parameters for thin-shell plastic parts using a neural network-based approach. Polym. Plast. Technol. Eng. 2010, 49 (1), 53-61.
    • (2010) Polym. Plast. Technol. Eng. , vol.49 , Issue.1 , pp. 53-61
    • Lin, J.C.1    Yang, Y.K.2    Hsiao, Y.H.3    Jeng, M.C.4
  • 10
    • 0027615085 scopus 로고
    • On-line prediction of final part dimensions in blow molding: A neural network computing approach
    • DiRaddo, R.W.; Garcia-Rejon, A. On-line prediction of final part dimensions in blow molding: A neural network computing approach. Polym. Eng. Sci. 1993, 33 (11), 653-664.
    • (1993) Polym. Eng. Sci. , vol.33 , Issue.11 , pp. 653-664
    • DiRaddo, R.W.1    Garcia-Rejon, A.2
  • 11
    • 0027555999 scopus 로고
    • Modeling of membrane inflation in blow molding: Neural network prediction of initial dimensions from final part specifications
    • DiRaddo, R.W.; Garcia-Rejon, A. Modeling of membrane inflation in blow molding: Neural network prediction of initial dimensions from final part specifications. Adv. Polym. Technol. 1993, 12 (1), 3-24.
    • (1993) Adv. Polym. Technol. , vol.12 , Issue.1 , pp. 3-24
    • DiRaddo, R.W.1    Garcia-Rejon, A.2
  • 12
    • 0036298668 scopus 로고    scopus 로고
    • Prediction of parison swell in plastics extrusion blow molding using a neural network method
    • Huang, H.X.; Liao, C.M. Prediction of parison swell in plastics extrusion blow molding using a neural network method. Polym. Test.2002, 21 (7), 745-749.
    • (2002) Polym. Test. , vol.21 , Issue.7 , pp. 745-749
    • Huang, H.X.1    Liao, C.M.2
  • 13
    • 19944402242 scopus 로고    scopus 로고
    • Modeling parison formation in extrusion blow molding by neural networks
    • Huang, H.X.; Lu, S. Modeling parison formation in extrusion blow molding by neural networks. J. Appl. Polym. Sci. 2005, 96 (6), 2230-2239.
    • (2005) J. Appl. Polym. Sci. , vol.96 , Issue.6 , pp. 2230-2239
    • Huang, H.X.1    Lu, S.2
  • 14
    • 22944457536 scopus 로고    scopus 로고
    • Neural modeling of parison extrusion in extrusion blow molding
    • Huang, H.X.; Lu, S. Neural modeling of parison extrusion in extrusion blow molding. J. Rein. Plast. Comp. 2005, 24 (10), 1025-1034.
    • (2005) J. Rein. Plast. Comp. , vol.24 , Issue.10 , pp. 1025-1034
    • Huang, H.X.1    Lu, S.2
  • 15
    • 34248141712 scopus 로고    scopus 로고
    • Finite element and neural network modeling of viscoelastic annular extrusion
    • Huang, H.X.; Miao, Y.S. Finite element and neural network modeling of viscoelastic annular extrusion. J Fluids Eng-Transactions of ASME 2007, 129 (2), 218-225.
    • (2007) J Fluids Eng-Transactions of ASME , vol.129 , Issue.2 , pp. 218-225
    • Huang, H.X.1    Miao, Y.S.2
  • 16
    • 33746349246 scopus 로고    scopus 로고
    • Fast online acquisition and analysis for parison swell and sag in blow molding
    • Huang, H.X.; Li, J.C. Fast online acquisition and analysis for parison swell and sag in blow molding. J. Appl. Polym. Sci. 2006, 101 (4), 2399-2406.
    • (2006) J. Appl. Polym. Sci. , vol.101 , Issue.4 , pp. 2399-2406
    • Huang, H.X.1    Li, J.C.2
  • 17
    • 85096889229 scopus 로고    scopus 로고
    • 2nd Ed., Oxford University Press: New York
    • Tanner, R.I. Engineering Rheology, 2nd Ed., Oxford University Press: New York, 2000.
    • (2000) Engineering Rheology
    • Tanner, R.I.1
  • 18
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of Control Signal, and Systems 1989, 2 (4), 303-314.
    • (1989) Mathematics of Control Signal, and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 19
    • 0000334686 scopus 로고
    • How to develop neural-network applications
    • Bailey, D.; Thompson, D. How to develop neural-network applications. AI Expert 1990, 5 (6), 38-47.
    • (1990) AI Expert , vol.5 , Issue.6 , pp. 38-47
    • Bailey, D.1    Thompson, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.