메뉴 건너뛰기




Volumn 13, Issue 1, 2012, Pages 287-298

Global attractivity for nonlinear fractional differential equations

Author keywords

Attractive; Fixed point; Fractional differential equations; Nonlinear

Indexed keywords

ATTRACTIVE; CAPUTO FRACTIONAL DERIVATIVES; FIXED POINTS; FRACTIONAL CALCULUS; FRACTIONAL DIFFERENTIAL EQUATIONS; GLOBAL ATTRACTIVITY; KRASNOSELSKII'S FIXED-POINT THEOREM; NONLINEAR; SCHAUDER'S FIXED POINT THEOREM;

EID: 80052816299     PISSN: 14681218     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nonrwa.2011.07.034     Document Type: Article
Times cited : (74)

References (24)
  • 3
    • 77949264980 scopus 로고    scopus 로고
    • A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
    • Ravi P. Agarwal, M. Benchohra, and S. Hamani A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions Acta Appl. Math. 109 2010 973 1033
    • (2010) Acta Appl. Math. , vol.109 , pp. 973-1033
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 4
    • 73249139676 scopus 로고    scopus 로고
    • On the concept of solution for fractional differential equations with uncertainty
    • R.P. Agarwal, V. Lakshmikantham, and J.J. Nieto On the concept of solution for fractional differential equations with uncertainty Nonlinear Anal. 72 2009 2859 2862
    • (2009) Nonlinear Anal. , vol.72 , pp. 2859-2862
    • Agarwal, R.P.1    Lakshmikantham, V.2    Nieto, J.J.3
  • 5
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for dirichlet problems of singular nonlinear fractional differential equations
    • R.P. Agarwal, D. O'Regan, and S. Stank Positive solutions for dirichlet problems of singular nonlinear fractional differential equations J. Math. Anal. Appl. 371 2010 57 68
    • (2010) J. Math. Anal. Appl. , vol.371 , pp. 57-68
    • Agarwal, R.P.1    O'Regan, D.2    Stank, S.3
  • 6
    • 74149092568 scopus 로고    scopus 로고
    • Existence of fractional neutral functional differential equations
    • R.P. Agarwal, Y. Zhou, and Y. He Existence of fractional neutral functional differential equations Comput. Math. Appl. 59 2010 1095 1100
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1095-1100
    • Agarwal, R.P.1    Zhou, Y.2    He, Y.3
  • 7
    • 71649104924 scopus 로고    scopus 로고
    • Fractional order differential equations on an unbounded domain
    • A. Arara Fractional order differential equations on an unbounded domain Nonlinear Anal. 72 2010 580 586
    • (2010) Nonlinear Anal. , vol.72 , pp. 580-586
    • Arara, A.1
  • 8
    • 67651148207 scopus 로고    scopus 로고
    • Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators
    • Y.K. Chang, and J.J. Nieto Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators Numer. Funct. Anal. Optim. 30 2009 227 244
    • (2009) Numer. Funct. Anal. Optim. , vol.30 , pp. 227-244
    • Chang, Y.K.1    Nieto, J.J.2
  • 9
    • 70249121999 scopus 로고    scopus 로고
    • Existence of periodic solution for a nonlinear fractional differential equation
    • Article ID 324561, 18 pages
    • M. Belmekki, Juan J. Nieto, and R. Rodríguez-López Existence of periodic solution for a nonlinear fractional differential equation Bound. Value Probl. 2009 Article ID 324561, 18 pages
    • (2009) Bound. Value Probl.
    • Belmekki, M.1    Nieto, J.J.2    Rodríguez-López, R.3
  • 10
    • 77953135670 scopus 로고    scopus 로고
    • Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order
    • M. El-Shahed, and J.J. Nieto Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order Comput. Math. Appl. 59 2010 3438 3443
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3438-3443
    • El-Shahed, M.1    Nieto, J.J.2
  • 12
    • 77955429536 scopus 로고    scopus 로고
    • Maximum principles for fractional differential equations derived from Mittag-Leffler functions
    • J.J. Nieto Maximum principles for fractional differential equations derived from Mittag-Leffler functions Appl. Math. Lett. 23 2010 1248 1251
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1248-1251
    • Nieto, J.J.1
  • 13
    • 74149083504 scopus 로고    scopus 로고
    • Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations
    • C.F. Li, X.N. Luo, and Y. Zhou Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations Comput. Math. Appl. 59 2010 1363 1375
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1363-1375
    • Li, C.F.1    Luo, X.N.2    Zhou, Y.3
  • 14
    • 67349177003 scopus 로고    scopus 로고
    • Existence and uniqueness for fractional neutural differential equations with infinite delay
    • Y. Zhou, F. Jiao, and J. Li Existence and uniqueness for fractional neutural differential equations with infinite delay Nonlinear Anal. 71 2009 3249 3256
    • (2009) Nonlinear Anal. , vol.71 , pp. 3249-3256
    • Zhou, Y.1    Jiao, F.2    Li, J.3
  • 15
    • 74149092121 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions for a system of fractional differential equations
    • Y. Zhou Existence and uniqueness of solutions for a system of fractional differential equations Fract. Calc. Appl. Anal. 12 2009 195 204
    • (2009) Fract. Calc. Appl. Anal. , vol.12 , pp. 195-204
    • Zhou, Y.1
  • 16
    • 77958009389 scopus 로고    scopus 로고
    • A class of fractional evolution equations and optimal controls
    • J. Wang, and Y. Zhou A class of fractional evolution equations and optimal controls Nonlinear Anal. RWA 12 2011 262 272
    • (2011) Nonlinear Anal. RWA , vol.12 , pp. 262-272
    • Wang, J.1    Zhou, Y.2
  • 17
    • 76649139783 scopus 로고    scopus 로고
    • LMI stability conditions for fractional order systems
    • J. Sabatier, M. Moze, and C. Farges LMI stability conditions for fractional order systems Comput. Math. Appl. 59 2010 1594 1609
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1594-1609
    • Sabatier, J.1    Moze, M.2    Farges, C.3
  • 19
    • 14944338681 scopus 로고    scopus 로고
    • Stability in neutral nonlinear differential equations with functional delays using fixed-point theory
    • DOI 10.1016/j.mcm.2004.10.001, PII S0895717704002626
    • Y.N. Raffoul Stability in neutral nonlinear differential equations with functional delays using fixed-point theory Math. Comput. Modelling 44 2004 691 700 (Pubitemid 40359302)
    • (2004) Mathematical and Computer Modelling , vol.40 , Issue.7-8 , pp. 691-700
    • Raffoul, Y.N.1
  • 20
    • 14944366448 scopus 로고    scopus 로고
    • Fixed points, stability, and exact linearization
    • DOI 10.1016/j.na.2005.01.079, PII S0362546X05000969
    • T.A. Burton Fixed points, stability, and exact linearization Nonlinear Anal. 61 2005 857 870 (Pubitemid 40370497)
    • (2005) Nonlinear Analysis, Theory, Methods and Applications , vol.61 , Issue.5 , pp. 857-870
    • Burton, T.A.1
  • 21
    • 41749117533 scopus 로고    scopus 로고
    • Stability in functional differential equations established using fixed point theory
    • DOI 10.1016/j.na.2007.03.017, PII S0362546X0700226X
    • C. Jin, and J. Luo Stability in functional differential equations established using fixed point theory Nonlinear Anal. 68 2008 3307 3315 (Pubitemid 351491471)
    • (2008) Nonlinear Analysis, Theory, Methods and Applications , vol.68 , Issue.11 , pp. 3307-3315
    • Jin, C.1    Luo, J.2
  • 23
    • 0008332593 scopus 로고    scopus 로고
    • A fixed point theorem of Krasnoselskii
    • T.A. Burton A fixed point theorem of Krasnoselskii Appl. Math. Lett. 11 1998 85 88
    • (1998) Appl. Math. Lett. , vol.11 , pp. 85-88
    • Burton, T.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.