-
1
-
-
3042674466
-
αx′+g(x)=0
-
R.J. Ballieu, and K. Peiffer Attractivity of the origin for the equation x ″ + f (t, x, x ′) | x ′ | α x ′ + g (x) = 0 J. Math. Anal. Appl. 65 1978 321 332
-
(1978)
J. Math. Anal. Appl.
, vol.65
, pp. 321-332
-
-
Ballieu, R.J.1
Peiffer, K.2
-
3
-
-
12844262657
-
Stability by fixed point theory or Liapunov theory: A comparison
-
T.A. Burton Stability by fixed point theory or Liapunov theory a comparison Fixed Point Theory 4 2003 15 32
-
(2003)
Fixed Point Theory
, vol.4
, pp. 15-32
-
-
Burton, T.A.1
-
4
-
-
10044243393
-
Fixed points and stability of a nonconvolution equation
-
T.A. Burton Fixed points and stability of a nonconvolution equation Proc. Am. Math. Soc. 132 2004 3679 3687
-
(2004)
Proc. Am. Math. Soc.
, vol.132
, pp. 3679-3687
-
-
Burton, T.A.1
-
5
-
-
0346740478
-
On solutions of differential equations tending to zero
-
T.A. Burton, and J.W. Hooker On solutions of differential equations tending to zero J. Reine Angew. Math. 267 1974 151 165
-
(1974)
J. Reine Angew. Math.
, vol.267
, pp. 151-165
-
-
Burton, T.A.1
Hooker, J.W.2
-
6
-
-
14944385727
-
Nonlinear oscillation with large damping
-
L. Hatvani Nonlinear oscillation with large damping Dyn. Syst. Appl. 1 1992 257 270
-
(1992)
Dyn. Syst. Appl.
, vol.1
, pp. 257-270
-
-
Hatvani, L.1
-
7
-
-
21344431566
-
Integral conditions on the asymptotic stability for the damped linear oscillator with small damping
-
L. Hatvani Integral conditions on the asymptotic stability for the damped linear oscillator with small damping Proc. Am. Math. Soc. 124 1996 415 422
-
(1996)
Proc. Am. Math. Soc.
, vol.124
, pp. 415-422
-
-
Hatvani, L.1
-
8
-
-
14944347804
-
Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping
-
L. Hatvani, and T. Krisztin Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping Differential Integral Equations 10 1997 265 272
-
(1997)
Differential Integral Equations
, vol.10
, pp. 265-272
-
-
Hatvani, L.1
Krisztin, T.2
-
9
-
-
0001561980
-
A necessary and sufficient condition for the asymptotic stability of the damped oscillator
-
L. Hatvani, T. Krisztin, and V. Totik A necessary and sufficient condition for the asymptotic stability of the damped oscillator J. Differential Equations 119 1995 209 223
-
(1995)
J. Differential Equations
, vol.119
, pp. 209-223
-
-
Hatvani, L.1
Krisztin, T.2
Totik, V.3
-
10
-
-
84972518056
-
Asymptotic stability of the equilibrium of the damped oscillator
-
L. Hatvani, and V. Totik Asymptotic stability of the equilibrium of the damped oscillator Differential Integral Equations 6 1993 835 848
-
(1993)
Differential Integral Equations
, vol.6
, pp. 835-848
-
-
Hatvani, L.1
Totik, V.2
-
11
-
-
34250961888
-
Global asymptotic stability for nonlinear systems of differential equations
-
J.J. Levin, and J.A. Nohel Global asymptotic stability for nonlinear systems of differential equations Arch. Rational Mech. Anal. 5 1960 194 211
-
(1960)
Arch. Rational Mech. Anal.
, vol.5
, pp. 194-211
-
-
Levin, J.J.1
Nohel, J.A.2
-
12
-
-
21344476181
-
Asymptotic stability for intermittently controlled nonlinear oscillators
-
P. Pucci, and J. Serrin Asymptotic stability for intermittently controlled nonlinear oscillators SIAM J. Math. Anal. 25 1994 815 835
-
(1994)
SIAM J. Math. Anal.
, vol.25
, pp. 815-835
-
-
Pucci, P.1
Serrin, J.2
-
13
-
-
84963087484
-
Asymptotic stability of x″+a(t)x′+x=0
-
R.A. Smith Asymptotic stability of x ″ + a (t) x ′ + x = 0 Quart. J. Math. Oxford Ser. 12 2 1961 123 126
-
(1961)
Quart. J. Math. Oxford Ser.
, vol.12
, Issue.2
, pp. 123-126
-
-
Smith, R.A.1
-
14
-
-
0002522437
-
On global asymptotic stability of certain second order differential equations with integrable forcing terms
-
L.H. Thurston, and J.S.W. Wong On global asymptotic stability of certain second order differential equations with integrable forcing terms SIAM J. Appl. Math. 24 1973 50 61
-
(1973)
SIAM J. Appl. Math.
, vol.24
, pp. 50-61
-
-
Thurston, L.H.1
Wong, J.S.W.2
-
15
-
-
84968468826
-
On the retarded Liénard equation
-
B. Zhang On the retarded Liénard equation Proc. Am. Math. Soc. 115 1992 779 785
-
(1992)
Proc. Am. Math. Soc.
, vol.115
, pp. 779-785
-
-
Zhang, B.1
|