메뉴 건너뛰기




Volumn 29, Issue 9, 2011, Pages 594-606

A hierarchical feature fusion framework for adaptive visual tracking

Author keywords

Particle filter; Sequential Monte Carlo; Visual tracking

Indexed keywords

COMPUTATIONAL COMPLEXITY; HIERARCHICAL SYSTEMS; NONLINEAR FILTERING;

EID: 80052758897     PISSN: 02628856     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.imavis.2011.07.001     Document Type: Article
Times cited : (17)

References (36)
  • 1
    • 0032136153 scopus 로고    scopus 로고
    • CONDENSATION - Conditional Density Propagation for Visual Tracking
    • M. Isard, and A. Blake Condensation - conditional density propagation for visual tracking Int. J. Comput. Vis. 29 1 1998 5 28 URL citeseer.ist.psu.edu/ isard98condensation.html (Pubitemid 128523364)
    • (1998) International Journal of Computer Vision , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 2
    • 34948822339 scopus 로고    scopus 로고
    • Adaptive multifeature tracking in a particle filtering framework
    • DOI 10.1109/TCSVT.2007.903781
    • E. Maggio, F. Smerladi, and A. Cavallaro Adaptive multifeature tracking in a particle filtering framework Circuits and Systems for Video Technology, IEEE Transactions on 17 (10) Oct. 2007 1348 1359 10.1109/TCSVT.2007.903781 (Pubitemid 47525329)
    • (2007) IEEE Transactions on Circuits and Systems for Video Technology , vol.17 , Issue.10 , pp. 1348-1359
    • Maggio, E.1    Smerladi, F.2    Cavallaro, A.3
  • 3
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • University of Toronto URL
    • R.M. Neal Probabilistic inference using Markov chain Monte Carlo methods Tech. Rep. CRG-TR-93-1 1993 University of Toronto URL citeseer.ist.psu.edu/ neal93probabilistic.html
    • (1993) Tech. Rep. CRG-TR-93-1
    • Neal, R.M.1
  • 4
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • URL
    • J.S. Liu, and R. Chen Sequential Monte Carlo methods for dynamic systems J. Am. Stat. Assoc. 93 1998 1032 1044 URL citeseer.ist.psu.edu/article/ liu98sequential.html
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 1032-1044
    • Liu, J.S.1    Chen, R.2
  • 5
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • A. Doucet, S. Godsill, and C. Andrieu On sequential Monte Carlo sampling methods for Bayesian filtering Stat. Comput. 10 3 2000 197 208 http://dx.doi.org/10.1023/A:1008935410038
    • (2000) Stat. Comput. , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 6
    • 0037262814 scopus 로고    scopus 로고
    • An introduction to mcmc for machine learning
    • 10.1023/A:1020281327116 URL
    • C. Andrieu, N. de Freitas, A. Doucet, and M.I. Jordan An introduction to mcmc for machine learning Mach. Learn. V50 1 2003 5 43 10.1023/A:1020281327116 URL http://dx.doi.org/10.1023/A:1020281327116
    • (2003) Mach. Learn. , vol.50 V , Issue.1 , pp. 5-43
    • Andrieu, C.1    De Freitas, N.2    Doucet, A.3    Jordan, M.I.4
  • 7
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • DOI 10.1109/78.978374, PII S1053587X0200569X
    • M.S. Arulampalam, S. Maskell, and N. Gordon A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking IEEE Trans. Signal Process. 50 2 2002 174 188 (Pubitemid 34291500)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 8
    • 33846013241 scopus 로고    scopus 로고
    • Object tracking: A survey
    • A. Yilmaz, O. Javed, and M. Shah Object tracking: a survey ACM Comput. Surv. 38 4 2006 13 http://doi.acm.org/10.1145/1177352.1177355
    • (2006) ACM Comput. Surv. , vol.38 , Issue.4 , pp. 13
    • Yilmaz, A.1    Javed, O.2    Shah, M.3
  • 10
    • 13344250690 scopus 로고    scopus 로고
    • Data fusion for visual tracking with particles
    • DOI 10.1109/JPROC.2003.823147, Sequential State Estimation: From Kalman Filters to Particles Filters
    • P. Perez, J. Vermaak, and A. Blake Data fusion for visual tracking with particles Proc. IEEE 92 3 2004 495 513 (Pubitemid 40890756)
    • (2004) Proceedings of the IEEE , vol.92 , Issue.3 , pp. 495-513
    • Perez, P.1    Vermaak, J.2    Blake, A.3
  • 13
  • 14
    • 3543134710 scopus 로고    scopus 로고
    • Robust visual tracking by integrating multiple cues based on co-inference learning
    • Y. Wu, and T.S. Huang Robust visual tracking by integrating multiple cues based on co-inference learning Int. J. Comput. Vis. 58 1 2004 55 71 http://dx.doi.org/10.1023/B:VISI.0000016147.97880.cd
    • (2004) Int. J. Comput. Vis. , vol.58 , Issue.1 , pp. 55-71
    • Wu, Y.1    Huang, T.S.2
  • 16
    • 0032804927 scopus 로고    scopus 로고
    • The visual analysis of human movement: A survey
    • D.M. Gavrila The visual analysis of human movement: a survey Comput. Vis. Image Underst. 73 1 1999 82 98 http://dx.doi.org/10.1006/cviu.1998.0716
    • (1999) Comput. Vis. Image Underst. , vol.73 , Issue.1 , pp. 82-98
    • Gavrila, D.M.1
  • 17
    • 0035271128 scopus 로고    scopus 로고
    • A survey of computer vision-based human motion capture
    • DOI 10.1006/cviu.2000.0897, Modeling People Toward Vision-Based Understanding of a Person s Shape, Appearence and Movement
    • T.B. Moeslund, and E. Granum A survey of computer vision-based human motion capture Comput. Vis. Image Underst.: CVIU 81 3 2001 231 268 URL citeseer.ist.psu.edu/moeslund01survey.html (Pubitemid 32415976)
    • (2001) Computer Vision and Image Understanding , vol.81 , Issue.3 , pp. 231-268
    • Moeslund, T.B.1    Granum, E.2
  • 26
    • 84957655116 scopus 로고    scopus 로고
    • ICONDENSATION: Unifying low-level and high-level tracking in a stochastic framework
    • Computer Vision - ECCV'98
    • M. Isard, and A. Blake ICONDENSATION: unifying low-level and high-level tracking in a stochastic framework Lect. Notes Comput. Sci. 1406 1998 893 908 URL citeseer.ist.psu.edu/isard98icondensation.html (Pubitemid 128093126)
    • (1998) Lecture Notes in Computer Science , Issue.1406 , pp. 893-908
    • Isard, M.1    Blake, A.2
  • 28
    • 33745171104 scopus 로고    scopus 로고
    • Tracking multiple mouse contours (without too many samples)
    • DOI 10.1109/CVPR.2005.349, 1467381, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
    • K. Branson, and S. Belongie Tracking multiple mouse contours (without too many samples) CVPR '05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1 IEEE Computer Society, Washington, DC, USA 2005 1039 1046 http://dx.doi.org/10.1109/ CVPR.2005.349 (Pubitemid 43897307)
    • (2005) Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 , vol.I , pp. 1039-1046
    • Branson, K.1    Belongie, S.2
  • 33
    • 33847018467 scopus 로고    scopus 로고
    • Transductive local exploration particle filter for object tracking
    • DOI 10.1016/j.imavis.2006.05.001, PII S026288560600148X
    • J. Li, and C.-S. Chua Transductive local exploration particle filter for object tracking Image Vision Comput. 25 5 2007 544 552 http://dx.doi.org/10. 1016/j.imavis.2006.05.001 (Pubitemid 46275162)
    • (2007) Image and Vision Computing , vol.25 , Issue.5 , pp. 544-552
    • Li, J.1    Chua, C.-S.2
  • 34
    • 27744451514 scopus 로고    scopus 로고
    • Product of Gaussians for speech recognition
    • DOI 10.1016/j.csl.2004.12.002, PII S0885230804000786
    • M.J.F. Gales, and S.S. Airey Product of Gaussians for speech recognition Comput. Speech Lang. 20 1 2006 22 40 (Pubitemid 41605383)
    • (2006) Computer Speech and Language , vol.20 , Issue.1 , pp. 22-40
    • Gales, M.J.F.1    Airey, S.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.