-
1
-
-
0039982139
-
Exponential convergence of a linear rational interpolant between transformed Chebyshev points
-
R. BALTENSPERGER, J.-P. BERRUT, AND B. NÖEL, Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comp., 68(1999), pp. 1109-1120.
-
(1999)
Math. Comp.
, vol.68
, pp. 1109-1120
-
-
Baltensperger, R.1
Berrut, J.-P.2
Nöel, B.3
-
2
-
-
0003030308
-
Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes de degré donńe
-
S. BERNSTEIN, Sur l'Ordre de la Meilleure Approximation des Fonctions Continues par des Polynomes de Degré DonŃe, Mém. Acad. Roy. Belg., 1912.
-
(1912)
Mém. Acad. Roy. Belg.
-
-
Bernstein, S.1
-
3
-
-
37249039930
-
Adaptive polynomial interpolation on evenly spaced meshes
-
DOI 10.1137/050625667
-
M. BERZINS, Adaptive polynomial interpolation on evenly spaced meshes, SIAM Rev., 49(2007), pp. 604-627. (Pubitemid 350263545)
-
(2007)
SIAM Review
, vol.49
, Issue.4
, pp. 604-627
-
-
Berzins, M.1
-
4
-
-
38249009654
-
Defeating the Runge phenomenon for equispaced polynomial interpolation via Tikhonov regularization
-
J. P. BOYD, Defeating the Runge phenomenon for equispaced polynomial interpolation via Tikhonov regularization, Appl. Math. Lett., 5(1992), pp. 57-59.
-
(1992)
Appl. Math. Lett.
, vol.5
, pp. 57-59
-
-
Boyd, J.P.1
-
5
-
-
14544287790
-
Trouble with Gegenbauer reconstruction for defeating Gibb's phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations
-
DOI 10.1016/j.jcp.2004.10.008, PII S0021999104004152
-
J. P. BOYD, Trouble with Gegenbauer reconstruction for defeating Gibbs' phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations, J. Comput. Phys., 204(2005), pp. 253-264. (Pubitemid 40305786)
-
(2005)
Journal of Computational Physics
, vol.204
, Issue.1
, pp. 253-264
-
-
Boyd, J.P.1
-
6
-
-
34250701644
-
Exponentially accurate Runge-free approximation of non-periodic functions from samples on an evenly spaced grid
-
DOI 10.1016/j.aml.2006.10.001, PII S0893965907000158
-
J. P. BOYD, Exponentially accurate Runge-free approximation of non-periodic functions from samples on an evenly spaced grid, Appl. Math. Lett., 20(2007), pp. 971-975. (Pubitemid 46963538)
-
(2007)
Applied Mathematics Letters
, vol.20
, Issue.9
, pp. 971-975
-
-
Boyd, J.P.1
-
7
-
-
61349134822
-
Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions. Part I: Single-interval schemes
-
J. P. BOYD AND J. R. ONG, Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions. Part I: Single-interval schemes, Comm. Comput. Phys., 5(2009), pp. 484-497.
-
(2009)
Comm. Comput. Phys.
, vol.5
, pp. 484-497
-
-
Boyd, J.P.1
Ong, J.R.2
-
8
-
-
78651277394
-
Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, Part II: Multi-interval Polynomial Schemes and multidomain Chebyshev interpolation
-
J. P. BOYD AND J. R. ONG, Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, Part II: Multi-interval Polynomial Schemes and multidomain Chebyshev interpolation, Appl. Numer. Math., 61(2011), pp. 460-472.
-
(2011)
Appl. Numer. Math.
, vol.61
, pp. 460-472
-
-
Boyd, J.P.1
Ong, J.R.2
-
9
-
-
61649121874
-
Divergence (Runge phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock-Chebyshev subset interpolation
-
J. P. BOYD AND F. XU, Divergence (Runge phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock-Chebyshev subset interpolation, Appl. Math. Comput., 210(2007), pp. 158-168.
-
(2007)
Appl. Math. Comput.
, vol.210
, pp. 158-168
-
-
Boyd, J.P.1
Xu, F.2
-
10
-
-
77951989292
-
Minimum Sobolev Norm schemes and applications in image processing
-
S. CHANDRASEKARAN, K. R. JAYARAMAN, J. MOFFITT, H. N. MHASKAR, AND S. PAULI, Minimum Sobolev Norm schemes and applications in image processing, Proc. SPIE, 7535 (2010).
-
(2010)
Proc. SPIE
, pp. 7535
-
-
Chandrasekaran, S.1
Jayaraman, K.R.2
Moffitt, J.3
Mhaskar, H.N.4
Pauli, S.5
-
11
-
-
0001695051
-
The growth of polynomials bounded at equally spaced points
-
D. COPPERSMITH AND T. J. RIVLIN, The growth of polynomials bounded at equally spaced points, SIAM J. Math. Anal., 23(1992), pp. 970-983.
-
(1992)
SIAM J. Math. Anal.
, vol.23
, pp. 970-983
-
-
Coppersmith, D.1
Rivlin, T.J.2
-
13
-
-
0035635781
-
A Padé-based algorithm for overcoming the Gibbs phenomenon
-
T. A. DRISCOLL AND B. FORNBERG, A Padé-based algorithm for overcoming the Gibbs phenomenon, Numer. Algorithms, 26(2001), pp. 77-92.
-
(2001)
Numer. Algorithms
, vol.26
, pp. 77-92
-
-
Driscoll, T.A.1
Fornberg, B.2
-
14
-
-
0036467951
-
Interpolation in the limit of increasingly flat radial basis functions
-
DOI 10.1016/S0898-1221(01)00295-4, PII S0898122101002954
-
T. A. DRISCOLL AND B. FORNBERG, Interpolation in the limit of increasingly flat radial basis functions, Comput. Math. Appl., 43(2002), pp. 413-422. (Pubitemid 34104977)
-
(2002)
Computers and Mathematics with Applications
, vol.43
, Issue.3-5
, pp. 413-422
-
-
Driscoll, T.A.1
Fornberg, B.2
-
15
-
-
0040791797
-
Polynome zwischen Gitterpunkten
-
H. EHLICH, Polynome zwischen Gitterpunkten, Math. Z., 93(1966), pp. 144-153.
-
(1966)
Math. Z.
, vol.93
, pp. 144-153
-
-
Ehlich, H.1
-
16
-
-
0001952270
-
Schwankung von polynomen zwischen gitterpunkten
-
H. EHLICH AND K. ZELLER, Schwankung von Polynomen zwischen Gitterpunkten, Math. Z., 86(1964), pp. 41-44.
-
(1964)
Math. Z.
, vol.86
, pp. 41-44
-
-
Ehlich, H.1
Zeller, K.2
-
17
-
-
0002851813
-
Numerische abschätzung von polynomen
-
H. EHLICH AND K. ZELLER, Numerische Abschätzung von Polynomen, Z. Angew. Math. Mech., 45(1965), pp. T20-T22.
-
(1965)
Z. Angew. Math. Mech.
, vol.45
-
-
Ehlich, H.1
Zeller, K.2
-
18
-
-
0039081445
-
Auswertung der Normen von Interpolationsoperatoren
-
H. EHLICH AND K. ZELLER, Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 164(1966), pp. 105-112.
-
(1966)
Math. Ann.
, vol.164
, pp. 105-112
-
-
Ehlich, H.1
Zeller, K.2
-
19
-
-
34547757879
-
Barycentric rational interpolation with no poles and high rates of approximation
-
M. S. FLOATER AND K. HORMANN, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107(2007), pp. 315-331.
-
(2007)
Numer. Math.
, vol.107
, pp. 315-331
-
-
Floater, M.S.1
Hormann, K.2
-
20
-
-
38549125605
-
A stable algorithm for flat radial basis functions on a sphere
-
B. FORNBERG AND C. PIRET, A stable algorithm for flat radial basis functions on a sphere, SIAM J. Sci. Comput., 30(2007), pp. 60-80.
-
(2007)
SIAM J. Sci. Comput.
, vol.30
, pp. 60-80
-
-
Fornberg, B.1
Piret, C.2
-
21
-
-
14644431037
-
Stable computation of multiquadric interpolants for all values of the shape parameter
-
DOI 10.1016/j.camwa.2003.08.010, PII S0898122104003190
-
B. FORNBERG AND G. WRIGHT, Stable computation of multiquadric interpolants for all values of the shape parameter, Comput. Math. Appl., 48(2004), pp. 853-867. (Pubitemid 40319740)
-
(2004)
Computers and Mathematics with Applications
, vol.48
, Issue.5-6
, pp. 853-867
-
-
Fornberg, B.1
Wright, G.2
-
22
-
-
34250838673
-
The Runge phenomenon and spatially variable shape parameters in RBF interpolation
-
DOI 10.1016/j.camwa.2007.01.028, PII S0898122107002210
-
B. FORNBERG AND J. ZUEV, The Runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput. Math. Appl., 54(2007), pp. 379-398. (Pubitemid 46977176)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.3
, pp. 379-398
-
-
Fornberg, B.1
Zuev, J.2
-
23
-
-
32044450058
-
Robust reprojection methods for the resolution of the Gibbs phenomenon
-
DOI 10.1016/j.acha.2004.12.007, PII S1063520305000588, Computational Hermonic Analysis - Part 2
-
A. GELB AND J. TANNER, Robust reprojection methods for the resolution of the Gibbs phenomenon, Appl. Comput. Harmon. Anal., 20(2006), pp. 3-25. (Pubitemid 43199857)
-
(2006)
Applied and Computational Harmonic Analysis
, vol.20
, Issue.1
, pp. 3-25
-
-
Gelb, A.1
Tanner, J.2
-
24
-
-
0031381548
-
On the Gibbs phenomenon and its resolution
-
PII S0036144596301390
-
D. GOTTLIEB AND C.-W. SHU, On the Gibbs phenomenon and its resolution, SIAM Rev., 39(1997), pp. 644-668. (Pubitemid 127661264)
-
(1997)
SIAM Review
, vol.39
, Issue.4
, pp. 644-668
-
-
Gottlieb, D.1
Shu, C.-W.2
-
26
-
-
55549130484
-
New quadrature formulas from conformal maps
-
N. HALE AND L. N. TREFETHEN, New quadrature formulas from conformal maps, SIAM J. Numer. Anal., 46(2008), pp. 930-948.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 930-948
-
-
Hale, N.1
Trefethen, L.N.2
-
27
-
-
33749725182
-
Uniformly high order accurate essentially non-oscillatory schemes. III
-
A. HARTEN, B. ENGQUIST, S. OSHER, AND S. R. CHAKRAVARTHY, Uniformly high order accurate essentially non-oscillatory schemes. III, J. Comput. Phys., 71(1987), pp. 231-303.
-
(1987)
J. Comput. Phys.
, vol.71
, pp. 231-303
-
-
Harten, A.1
Engquist, B.2
Osher, S.3
Chakravarthy, S.R.4
-
28
-
-
7444229866
-
The numerical stability of barycentric Lagrange interpolation
-
DOI 10.1093/imanum/24.4.547
-
N. J. HIGHAM, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 24(2004), pp. 547-556. (Pubitemid 39443656)
-
(2004)
IMA Journal of Numerical Analysis
, vol.24
, Issue.4
, pp. 547-556
-
-
Higham, N.J.1
-
29
-
-
0040377031
-
Numerical differentiation by high order interpolation
-
P. HOFFMAN AND K. C. REDDY, Numerical differentiation by high order interpolation, SIAM J. Sci. Stat. Comput., 8(1987), pp. 979-987.
-
(1987)
SIAM J. Sci. Stat. Comput.
, vol.8
, pp. 979-987
-
-
Hoffman, P.1
Reddy, K.C.2
-
30
-
-
77649098509
-
On the Fourier extension of nonperiodic functions
-
D. HUYBRECHS, On the Fourier extension of nonperiodic functions, SIAM J. Numer. Anal., 47(2010), pp. 4326-4355.
-
(2010)
SIAM J. Numer. Anal.
, vol.47
, pp. 4326-4355
-
-
Huybrechs, D.1
-
31
-
-
67949118776
-
Stable high-order quadrature rules with equidistant points
-
D. HUYBRECHS, Stable high-order quadrature rules with equidistant points, J. Comput. Appl. Math., 231(2009), pp. 933-947.
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 933-947
-
-
Huybrechs, D.1
-
32
-
-
33644583290
-
Convergence analysis of Krylov subspace iterations with methods from potential theory
-
A. B. J. KUIJLAARS, Convergence analysis of Krylov subspace iterations with methods from potential theory, SIAM Rev., 48(2006), pp. 3-40.
-
(2006)
SIAM Rev.
, vol.48
, pp. 3-40
-
-
Kuijlaars, A.B.J.1
-
33
-
-
84882639810
-
How fast do radial basis function interpolants of analytic functions converge?
-
to appear
-
R. B. PLATTE, How fast do radial basis function interpolants of analytic functions converge?, IMA J. Numer. Anal., to appear.
-
IMA J. Numer. Anal.
-
-
Platte, R.B.1
-
34
-
-
33646486148
-
Polynomials and potential theory for Gaussian radial basis function interpolation
-
R. B. PLATTE AND T. A. DRISCOLL, Polynomials and potential theory for Gaussian radial basis function interpolation, SIAM J. Numer. Anal., 43(2005), pp. 750-766.
-
(2005)
SIAM J. Numer. Anal.
, vol.43
, pp. 750-766
-
-
Platte, R.B.1
Driscoll, T.A.2
-
35
-
-
65049085056
-
A hybrid Fourier-Chebyshev method for partial differential equations
-
R. B. PLATTE AND A. GELB, A hybrid Fourier-Chebyshev method for partial differential equations, J. Sci. Comput., 39(2009), pp. 244-264.
-
(2009)
J. Sci. Comput.
, vol.39
, pp. 244-264
-
-
Platte, R.B.1
Gelb, A.2
-
36
-
-
34247887615
-
Bounds for polynomials with a unit discrete norm
-
E. A. RAKHMANOV, Bounds for polynomials with a unit discrete norm, Ann. of Math. (2), 165(2007), pp. 55-88.
-
(2007)
Ann. of Math
, vol.165
, Issue.2
, pp. 55-88
-
-
Rakhmanov, E.A.1
-
38
-
-
0013125679
-
Uber empirische Funktionen and die Interpolation zwischen aquidistanten Ordinaten
-
C. RUNGE, Uber empirische Funktionen and die Interpolation zwischen aquidistanten Ordinaten, Z. Math. Phys., 46(1901), pp. 224-243.
-
(1901)
Z. Math. Phys.
, vol.46
, pp. 224-243
-
-
Runge, C.1
-
39
-
-
0001369024
-
n, v = cos (?π/n), ? = 0 (1) n; some unnoted advantages
-
n, v = cos (?π/n), ? = 0 (1) n; some unnoted advantages, Computer J., 15(1972), pp. 156-159.
-
(1972)
Computer J.
, vol.15
, pp. 156-159
-
-
Salzer, H.E.1
-
40
-
-
0001993389
-
Fehlerfortpflanzung bei Interpolation
-
A. SCHÖNHAGE, Fehlerfortpflanzung bei Interpolation, Numer. Math., 3(1961), pp. 62-71.
-
(1961)
Numer. Math.
, vol.3
, pp. 62-71
-
-
Schönhage, A.1
-
41
-
-
0242626810
-
Towards the resolution of the Gibbs phenomenon
-
B. D. SHIZGAL AND J. H. JUNG, Towards the resolution of the Gibbs phenomenon, J. Comput. Appl. Math., 161(2003), pp. 41-65.
-
(2003)
J. Comput. Appl. Math.
, vol.161
, pp. 41-65
-
-
Shizgal, B.D.1
Jung, J.H.2
-
42
-
-
45149141517
-
Chebyshev interpolation with approximate nodes of unrestricted multiplicity
-
G. STENGLE, Chebyshev interpolation with approximate nodes of unrestricted multiplicity, J. Approx. Theory, 57(1989), pp. 1-13.
-
(1989)
J. Approx. Theory
, vol.57
, pp. 1-13
-
-
Stengle, G.1
-
43
-
-
35348892228
-
Filters, mollifiers and the computation of the Gibbs phenomenon
-
E. TADMOR, Filters, mollifiers and the computation of the Gibbs phenomenon, Acta Numer., 16(2007), pp. 305-378.
-
(2007)
Acta Numer.
, vol.16
, pp. 305-378
-
-
Tadmor, E.1
-
44
-
-
34547761144
-
A rational spectral collocation method with adaptively transformed Chebyshev Grid points
-
DOI 10.1137/050641296
-
T. W. TEE AND L. N. TREFETHEN, A rational spectral collocation method with adaptively transformed Chebyshev grid points, SIAM J. Sci. Comput., 28(2006), pp. 1798-1811. (Pubitemid 47457328)
-
(2006)
SIAM Journal of Scientific Computing
, vol.28
, Issue.5
, pp. 1798-1811
-
-
Tee, T.W.1
Trefethen, L.N.2
-
45
-
-
80052702853
-
-
Oxford University, Oxford
-
L. N. TREFETHEN, N. HALE, R. B. PLATTE, T. A. DRISCOLL, AND R. PACHÓN, Chebfun Version 3, http://www.maths.ox.ac.uk/chebfun/, Oxford University, Oxford, 2009.
-
(2009)
Chebfun Version 3
-
-
Trefethen, L.N.1
Hale, N.2
Platte, R.B.3
Driscoll, T.A.4
Pachón, R.5
-
46
-
-
0346799078
-
The bounding of polynomials prescribed at equally distributed points
-
in Russian
-
A. H. TURETSKII, The bounding of polynomials prescribed at equally distributed points, Proc. Pedag. Inst. Vitebsk, 3(1940), pp. 117-127 (in Russian).
-
(1940)
Proc. Pedag. Inst. Vitebsk
, vol.3
, pp. 117-127
-
-
Turetskii, A.H.1
-
47
-
-
77649135434
-
A rational interpolation scheme with superpolynomial rate of convergence
-
Q. WANG, P. MOIN, AND G. IACCARINO, A rational interpolation scheme with superpolynomial rate of convergence, SIAM J. Numer. Anal., 47(2010), pp. 4073-4097.
-
(2010)
SIAM J. Numer. Anal.
, vol.47
, pp. 4073-4097
-
-
Wang, Q.1
Moin, P.2
Iaccarino, G.3
-
49
-
-
0014750042
-
Necessary and sufficient conditions for equidistant quadrature formula
-
M. W. WILSON, Necessary and sufficient conditions for equidistant quadrature formula, SIAM J. Numer. Anal., 7(1970), pp. 134-141.
-
(1970)
SIAM J. Numer. Anal.
, vol.7
, pp. 134-141
-
-
Wilson, M.W.1
|