-
2
-
-
85025249457
-
Trouble with Gegenbauer reconstruction for defeating Gibbs' phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations
-
in press
-
J.P. Boyd, Trouble with Gegenbauer reconstruction for defeating Gibbs' phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations, J. Comput. Phys., in press
-
J. Comput. Phys.
-
-
Boyd, J.P.1
-
4
-
-
1642361567
-
Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics
-
M. Ainsworth P. Davies D. Duncan P. Martin B. Rynne Topics in Computational Wave Propagation Direct and Inverse Problems Springer-Verlag
-
O.P. Bruno Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics M. Ainsworth P. Davies D. Duncan P. Martin B. Rynne Topics in Computational Wave Propagation Direct and Inverse Problems Lecture Notes in Computational Science and Engineering vol. 31 2003 Springer-Verlag 43 83
-
(2003)
Lecture Notes in Computational Science and Engineering
, vol.31
, pp. 43-83
-
-
Bruno, O.P.1
-
5
-
-
0035635781
-
A Padé-based algorithm for overcoming the Gibbs' phenomenon
-
T.A. Driscoll, and B. Fornberg A Padé-based algorithm for overcoming the Gibbs' phenomenon Numer. Algorithms 26 2001 77 92
-
(2001)
Numer. Algorithms
, vol.26
, pp. 77-92
-
-
Driscoll, T.A.1
Fornberg, B.2
-
6
-
-
0032363325
-
On a high order numerical method for functions with singularities
-
K.S. Eckhoff On a high order numerical method for functions with singularities Math. Comp. 67 223 1998 1063 1087
-
(1998)
Math. Comp.
, vol.67
, Issue.223
, pp. 1063-1087
-
-
Eckhoff, K.S.1
-
11
-
-
3543105041
-
Parameter optimization and reduction of round off error for the Gegenbauer reconstruction method
-
A. Gelb Parameter optimization and reduction of round off error for the Gegenbauer reconstruction method J. Sci. Comput. 20 3 2004 433 459
-
(2004)
J. Sci. Comput.
, vol.20
, Issue.3
, pp. 433-459
-
-
Gelb, A.1
-
12
-
-
85025256668
-
Determining analyticity for parameter optimization of the Gegenbauer reconstruction method
-
in press
-
A. Gelb, Z. Jackiewicz, Determining analyticity for parameter optimization of the Gegenbauer reconstruction method, SIAM J. Sci. Comput., in press
-
SIAM J. Sci. Comput.
-
-
Gelb, A.1
Jackiewicz, Z.2
-
14
-
-
0031381548
-
On the Gibbs phenomenon and its resolution
-
D. Gottlieb, and C.-W. Shu On the Gibbs phenomenon and its resolution SIAM Rev. 30 1997 644 668
-
(1997)
SIAM Rev.
, vol.30
, pp. 644-668
-
-
Gottlieb, D.1
Shu, C.-W.2
-
15
-
-
4043093491
-
A general theory for the resolution of the Gibbs phenomenon
-
D. Gottlieb, and C.W. Shu A general theory for the resolution of the Gibbs phenomenon Atti Conv. Lincei 147 1998 39 48
-
(1998)
Atti Conv. Lincei
, vol.147
, pp. 39-48
-
-
Gottlieb, D.1
Shu, C.W.2
-
16
-
-
0002201787
-
On the Gibbs phenomenon I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function
-
D. Gottlieb, C.-W. Shu, A. Solomonoff, and H. Vandeven On the Gibbs phenomenon I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function J. Comput. Appl. Math. 43 1992 81 98
-
(1992)
J. Comput. Appl. Math.
, vol.43
, pp. 81-98
-
-
Gottlieb, D.1
Shu, C.-W.2
Solomonoff, A.3
Vandeven, H.4
-
17
-
-
4043061384
-
Determination of optimal parameters for the Chebyshev-Gegenbauer reconstruction method
-
Z. Jackiewicz Determination of optimal parameters for the Chebyshev-Gegenbauer reconstruction method SIAM J. Sci. Comput. 25 2004 1187 1198
-
(2004)
SIAM J. Sci. Comput.
, vol.25
, pp. 1187-1198
-
-
Jackiewicz, Z.1
-
18
-
-
4444237676
-
Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs' phenomenon
-
J.-H. Jung, and B.D. Shizgal Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs' phenomenon J. Comput. Appl. Math. 172 2004 131 151
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 131-151
-
-
Jung, J.-H.1
Shizgal, B.D.2
-
20
-
-
0013002864
-
Adaptive mollifiers - High resolution recovery of piecewise smooth data from its spectral information
-
E. Tadmor, and J. Tanner Adaptive mollifiers - high resolution recovery of piecewise smooth data from its spectral information J. Found. Comput. Math. 2 2002 155 189
-
(2002)
J. Found. Comput. Math.
, vol.2
, pp. 155-189
-
-
Tadmor, E.1
Tanner, J.2
-
21
-
-
32044469299
-
Optimal filter and mollifier for piecewise smooth spectral data
-
in press
-
J. Tanner, Optimal filter and mollifier for piecewise smooth spectral data, Math. Comp., in press
-
Math. Comp.
-
-
Tanner, J.1
|