-
1
-
-
0034592922
-
Towards an effective cooperation of the user and the computer for classification
-
M. Ankerst, M. Ester, and H.-P. Kriegel. Towards an effective cooperation of the user and the computer for classification. In Proc. ACM SIGKDD, pages 179-188, 2000.
-
(2000)
Proc. ACM SIGKDD
, pp. 179-188
-
-
Ankerst, M.1
Ester, M.2
Kriegel, H.-P.3
-
2
-
-
79951784092
-
Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery
-
May
-
E. Bertini and D. Lalanne. Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery. SIGKDD Explor. Newsl., 11:9-18, May 2010.
-
(2010)
SIGKDD Explor. Newsl.
, vol.11
, pp. 9-18
-
-
Bertini, E.1
Lalanne, D.2
-
3
-
-
65449123194
-
An inductive database prototype based on virtual mining views
-
H. Blockeel, T. Calders, E. Fromont, B. Goethals, A. Prado, and C. Robardet. An inductive database prototype based on virtual mining views. In Proc. ACM SIGKDD, pages 1061-1064, 2008.
-
(2008)
Proc. ACM SIGKDD
, pp. 1061-1064
-
-
Blockeel, H.1
Calders, T.2
Fromont, E.3
Goethals, B.4
Prado, A.5
Robardet, C.6
-
4
-
-
77956241377
-
FpVAT: A visual analytic tool for supporting frequent pattern mining
-
May
-
C. L. Carmichael and C. K.-S. Leung. FpVAT: a visual analytic tool for supporting frequent pattern mining. SIGKDD Explor. Newsl., 11:39-48, May 2010.
-
(2010)
SIGKDD Explor. Newsl.
, vol.11
, pp. 39-48
-
-
Carmichael, C.L.1
Leung, C.K.-S.2
-
5
-
-
80052395055
-
VisAR : A new technique for visualizing mined association rules
-
X. Li, S. Wang, and Z. Dong, editors, Springer Berlin/Heidelberg
-
A. Datta and K. Techapichetvanich. VisAR : a new technique for visualizing mined association rules. In X. Li, S. Wang, and Z. Dong, editors, Adv. Data Min. Appl., pages 728-728. Springer Berlin/Heidelberg, 2005.
-
(2005)
Adv. Data Min. Appl.
, pp. 728-728
-
-
Datta, A.1
Techapichetvanich, K.2
-
6
-
-
80855141626
-
Maximum entropy models and subjective interestingness: An application to tiles in binary databases
-
In press
-
T. De Bie. Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Min. Knowl. Disc., In press.
-
Data Min. Knowl. Disc.
-
-
De Bie, T.1
-
8
-
-
33749319347
-
Interestingness measures for data mining: A survey
-
September
-
L. Geng and H. J. Hamilton. Interestingness measures for data mining: A survey. ACM Comput. Surv., 38, September 2006.
-
(2006)
ACM Comput. Surv.
, vol.38
-
-
Geng, L.1
Hamilton, H.J.2
-
9
-
-
80052395223
-
Useful patterns (UP'10) ACM SIGKDD workshop report
-
March
-
B. Goethals, N. Tatti, and J. Vreeken. Useful patterns (UP'10) ACM SIGKDD workshop report. SIGKDD Explor. Newsl., 12:56-58, March 2011.
-
(2011)
SIGKDD Explor. Newsl.
, vol.12
, pp. 56-58
-
-
Goethals, B.1
Tatti, N.2
Vreeken, J.3
-
11
-
-
0242625291
-
Selecting the right interestingness measure for association patterns
-
V. Kumar, J. Srivastava, and P.-N. Tan. Selecting the right interestingness measure for association patterns. In Proc. ACM SIGKDD, pages 32-41, 2002.
-
(2002)
Proc. ACM SIGKDD
, pp. 32-41
-
-
Kumar, V.1
Srivastava, J.2
Tan, P.-N.3
|