메뉴 건너뛰기




Volumn , Issue , 2011, Pages 6-14

CHIRP: A new classifier based on composite hypercubes on iterated random projections

Author keywords

Random projections; Supervised classification

Indexed keywords

ITERATIVE METHODS;

EID: 80052682430     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020418     Document Type: Conference Paper
Times cited : (32)

References (45)
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the 1998 ACM SIGMOD, pages 94-105, 1998. (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 4
    • 84878583400 scopus 로고    scopus 로고
    • Decision Queue Classifier for Supervised Learning Using Rotated Hyperboxes
    • Progress in Artificial Intelligence - IBERAMIA 98
    • J. Aguilar, J. Riquelme, and M. Toro. Decision queue classifier for supervised learning using rotated hyperboxes. In Proceedings of the 6th Ibero-American Conference on AI: Progress in Artificial Intelligence, volume 4045 of Lecture Notes in Computer Science, pages 326-336. Springer, 1998. (Pubitemid 128145633)
    • (1998) Lecture Notes in Computer Science , Issue.1484 , pp. 326-336
    • Aguilar, J.1    Riquelme, J.2    Toro, M.3
  • 6
    • 77951154863 scopus 로고    scopus 로고
    • An L-infinity norm visual classifier
    • A. Anand, L. Wilkinson, and D. N. Tuan. An L-infinity norm visual classifier. In ICDM, pages 687-692, 2009.
    • (2009) ICDM , pp. 687-692
    • Anand, A.1    Wilkinson, L.2    Tuan, D.N.3
  • 8
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57:289-300, 1995.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 9
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations
    • DOI 10.3150/bj/1106314847
    • P. Bickel and E. Levina. Some theory for Fisher's linear discriminant function,'naive Bayes', and some alternatives when there are many more variables than observations. Bernoulli, 10:989-1010, 2004. (Pubitemid 44242745)
    • (2004) Bernoulli , vol.10 , Issue.6 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 12
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of AI Research, 2:263-286, 1995.
    • (1995) Journal of AI Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 13
    • 34247097773 scopus 로고    scopus 로고
    • K-means clustering via principal component analysis
    • New York, NY, USA, ACM
    • C. Ding and X. He. K-means clustering via principal component analysis. In ICML'04, page 29, New York, NY, USA, 2004. ACM.
    • (2004) ICML'04 , pp. 29
    • Ding, C.1    He, X.2
  • 15
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • London, UK, Springer-Verlag
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In EuroCOLT'95, pages 23-37, London, UK, 1995. Springer-Verlag.
    • (1995) EuroCOLT'95 , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 17
    • 65449171025 scopus 로고    scopus 로고
    • Turning clusters into patterns: Rectangle-based discriminative data description
    • DOI 10.1109/ICDM.2006.163, 4053048, Proceedings - Sixth International Conference on Data Mining, ICDM 2006
    • B. J. Gao and M. Ester. Turning clusters into patterns: Rectangle-based discriminative data description. In ICDM'06: Proceedings of the Sixth International Conference on Data Mining, pages 200-211, Washington, DC, USA, 2006. IEEE Computer Society. (Pubitemid 47485801)
    • (2007) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 200-211
    • Gao, B.J.1    Ester, M.2
  • 18
    • 80052664177 scopus 로고    scopus 로고
    • Regularized discriminant analysis and its application in microarrays
    • Y. Guo, T. Hastie, and R. Tibshirani. Regularized discriminant analysis and its application in microarrays. Biostatistics, 1:1-18, 2005.
    • (2005) Biostatistics , vol.1 , pp. 1-18
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 21
    • 0029178509 scopus 로고
    • Projection pursuit for high dimensional feature reduction: Paralleland sequential approaches
    • L. O. Jimenez and D. A. Landgrebe. Projection pursuit for high dimensional feature reduction: paralleland sequential approaches. In Geoscience and Remote Sensing Symposium, 1995. IGARSS'95, volume 1, pages 148-150, 1995.
    • (1995) Geoscience and Remote Sensing Symposium, 1995. IGARSS'95 , vol.1 , pp. 148-150
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 23
    • 0029306995 scopus 로고
    • Statlog: Comparison of classification algorithms on large real-world problems
    • R. King, C. Feng, and A. Sutherland. Statlog: comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence, 9, 1995.
    • (1995) Applied Artificial Intelligence , vol.9
    • King, R.1    Feng, C.2    Sutherland, A.3
  • 26
    • 80053164709 scopus 로고    scopus 로고
    • Robust logitboost and Adaptive Base Class (ABC) logitboost
    • IEEE
    • P. Li. Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost. In UAI 2010 Proceedings. IEEE, 2010.
    • (2010) UAI 2010 Proceedings
    • Li, P.1
  • 29
    • 23944444342 scopus 로고    scopus 로고
    • Concise descriptions of subsets of structured sets
    • DOI 10.1145/1061318.1061324
    • K. Q. Pu and A. O. Mendelzon. Concise descriptions of subsets of structured sets. ACM Transactions on Database Systems, 30(1):211-248, 2005. (Pubitemid 41201815)
    • (2005) ACM Transactions on Database Systems , vol.30 , Issue.1 , pp. 211-248
    • Pu, K.Q.1    Mendelzon, A.O.2
  • 31
    • 1442267080 scopus 로고
    • Learning decision lists
    • R. L. Rivest. Learning decision lists. Machine Learning, 2:229-246, 1987.
    • (1987) Machine Learning , vol.2 , pp. 229-246
    • Rivest, R.L.1
  • 32
    • 0018734781 scopus 로고
    • On optimal and data-based histograms
    • DOI 10.2307/2335182
    • D. W. Scott. On optimal and data-based histograms. Biometrika, 66:605-610, 1979. (Pubitemid 10218411)
    • (1979) Biometrika , vol.66 , Issue.3 , pp. 605-610
    • Scott, D.W.1
  • 34
    • 0026927202 scopus 로고
    • Fuzzy min-max neural network, i: Classification
    • P. K. Simpson. Fuzzy min-max neural network, i: Classification. IEEE Transactions on Neural Networks, 3:776-786, 1992.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 776-786
    • Simpson, P.K.1
  • 36
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • DOI 10.1093/bioinformatics/bti033
    • A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21(5):631-643, 2005. (Pubitemid 40424789)
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 39
    • 33947525422 scopus 로고    scopus 로고
    • Margin trees for high-dimensional classification
    • R. Tibshirani and T. Hastie. Margin trees for high-dimensional classification. Journal of Machine Learning Research, 8:637-652, 2007. (Pubitemid 46473522)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 637-652
    • Tishirani, R.1    Hastie, T.2
  • 40
    • 84945736891 scopus 로고
    • A quick, compact, two-sample test to Duckworth's specifications
    • J. Tukey. A quick, compact, two-sample test to Duckworth's specifications. Technometrics, pages 31-48, 1959.
    • (1959) Technometrics , pp. 31-48
    • Tukey, J.1
  • 41
    • 33744979255 scopus 로고    scopus 로고
    • A mixed-integer programming approach to multi-class data classification problem
    • DOI 10.1016/j.ejor.2005.04.049, PII S0377221705006909
    • F. Üney and M. Türkay. A mixed-integer programming approach to multi-class data classification problem. European Journal of Operational Research, 173:910-920, 2006. (Pubitemid 43866335)
    • (2006) European Journal of Operational Research , vol.173 , Issue.3 , pp. 910-920
    • Uney, F.1    Turkay, M.2
  • 42
    • 14844315829 scopus 로고    scopus 로고
    • American Mathematical Society, Providence, RI, USA
    • S. S. Vempala. The Random Projection Method. American Mathematical Society, Providence, RI, USA, 2004.
    • (2004) The Random Projection Method
    • Vempala, S.S.1
  • 43
    • 58149410197 scopus 로고
    • Estimating coefficients in linear models: It don't make no nevermind
    • H. Wainer. Estimating coefficients in linear models: It don't make no nevermind. Psychological Bulletin, 83(2):213-217, 1976.
    • (1976) Psychological Bulletin , vol.83 , Issue.2 , pp. 213-217
    • Wainer, H.1
  • 44
    • 0031479641 scopus 로고    scopus 로고
    • Data-based choice of histogram bin width
    • M. P. Wand. Data-based choice of histogram bin width. The American Statistician, 51(1):59-64, 1997.
    • (1997) The American Statistician , vol.51 , Issue.1 , pp. 59-64
    • Wand, M.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.