메뉴 건너뛰기




Volumn , Issue , 2011, Pages 168-176

Selecting a comprehensive set of reviews

Author keywords

Greedy algorithms; Review selection; Set cover

Indexed keywords

APPROXIMATION ALGORITHMS;

EID: 80052680844     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020440     Document Type: Conference Paper
Times cited : (88)

References (32)
  • 3
    • 77954702542 scopus 로고    scopus 로고
    • Detecting high log-densities: An (1/4) approximation for densest -subgraph
    • A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high log-densities: an (1/4) approximation for densest -subgraph. In STOC, pages 201-210, 2010.
    • (2010) STOC , pp. 201-210
    • Bhaskara, A.1    Charikar, M.2    Chlamtac, E.3    Feige, U.4    Vijayaraghavan, A.5
  • 4
    • 38049090315 scopus 로고    scopus 로고
    • Maximizing a submodular set function subject to a matroid constraint (extended abstract)
    • G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function subject to a matroid constraint (extended abstract). In IPCO, pages 182-196, 2007.
    • (2007) IPCO , pp. 182-196
    • Calinescu, G.1    Chekuri, C.2    Pál, M.3    Vondrák, J.4
  • 5
    • 0032270694 scopus 로고    scopus 로고
    • The use of MMR, diversity-based reranking for reordering documents and producing summaries
    • J. G. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In SIGIR, pages 335-336, 1998.
    • (1998) SIGIR , pp. 335-336
    • Carbonell, J.G.1    Goldstein, J.2
  • 7
    • 35048858805 scopus 로고    scopus 로고
    • Maximum coverage problem with group budget constraints and applications
    • C. Chekuri and A. Kumar. Maximum coverage problem with group budget constraints and applications. In APPROX-RANDOM, pages 72-83, 2004.
    • (2004) APPROX-RANDOM , pp. 72-83
    • Chekuri, C.1    Kumar, A.2
  • 8
    • 33750364986 scopus 로고    scopus 로고
    • Less is more: Probabilistic models for retrieving fewer relevant documents
    • H. Chen and D. R. Karger. Less is more: probabilistic models for retrieving fewer relevant documents. In SIGIR, pages 429-436, 2006.
    • (2006) SIGIR , pp. 429-436
    • Chen, H.1    Karger, D.R.2
  • 9
    • 84865658243 scopus 로고    scopus 로고
    • How opinions are received by online communities: A case study on amazon.com helpfulness votes
    • New York, NY, USA, ACM
    • C. Danescu-Niculescu-Mizil, G. Kossinets, J. Kleinberg, and L. Lee. How opinions are received by online communities: a case study on amazon.com helpfulness votes. In WWW'09, pages 141-150, New York, NY, USA, 2009. ACM.
    • (2009) WWW'09 , pp. 141-150
    • Danescu-Niculescu-mizil, C.1    Kossinets, G.2    Kleinberg, J.3    Lee, L.4
  • 10
    • 36849022553 scopus 로고    scopus 로고
    • Designing novel review ranking systems: Predicting the usefulness and impact of reviews
    • DOI 10.1145/1282100.1282158, ICEC 2007: Proceedings of the Ninth International Conference on Electronic Commerce
    • A. Ghose and P. G. Ipeirotis. Designing novel review ranking systems: predicting the usefulness and impact of reviews. In ICEC'07, pages 303-310, New York, NY, USA, 2007. ACM. (Pubitemid 350229442)
    • (2007) ACM International Conference Proceeding Series , vol.258 , pp. 303-310
    • Ghose, A.1    Ipeirotis, P.G.2
  • 11
    • 84865627427 scopus 로고    scopus 로고
    • An axiomatic approach for result diversification
    • S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In WWW, pages 381-390, 2009.
    • (2009) WWW , pp. 381-390
    • Gollapudi, S.1    Sharma, A.2
  • 14
    • 9444223818 scopus 로고    scopus 로고
    • Mining opinion features in customer reviews
    • M. Hu and B. Liu. Mining opinion features in customer reviews. In AAAI, pages 755-760, 2004.
    • (2004) AAAI , pp. 755-760
    • Hu, M.1    Liu, B.2
  • 15
    • 80053377188 scopus 로고    scopus 로고
    • Automatically assessing review helpfulness
    • Sydney, Australia, July
    • S.-M. Kim, P. Pantel, T. Chklovski, and M. Pennacchiotti. Automatically assessing review helpfulness. In EMNLP, pages 423-430, Sydney, Australia, July 2006.
    • (2006) EMNLP , pp. 423-430
    • Kim, S.-M.1    Pantel, P.2    Chklovski, T.3    Pennacchiotti, M.4
  • 16
    • 78049363120 scopus 로고    scopus 로고
    • Efficient confident search in large review corpora
    • T. Lappas and D. Gunopulos. Efficient confident search in large review corpora. In ECML/PKDD (2), pages 195-210, 2010.
    • (2010) ECML/PKDD , Issue.2 , pp. 195-210
    • Lappas, T.1    Gunopulos, D.2
  • 17
    • 45449086600 scopus 로고    scopus 로고
    • Low-quality product review detection in opinion summarization
    • Poster paper
    • J. Liu, Y. Cao, C.-Y. Lin, Y. Huang, and M. Zhou. Low-quality product review detection in opinion summarization. In EMNLP-CoNLL, pages 334-342, 2007. Poster paper.
    • (2007) EMNLP-CoNLL , pp. 334-342
    • Liu, J.1    Cao, Y.2    Lin, C.-Y.3    Huang, Y.4    Zhou, M.5
  • 18
    • 77956988171 scopus 로고    scopus 로고
    • Highlighting diverse concepts in documents
    • K. Liu, E. Terzi, and T. Grandison. Highlighting diverse concepts in documents. In SDM, pages 545-556, 2009.
    • (2009) SDM , pp. 545-556
    • Liu, K.1    Terzi, E.2    Grandison, T.3
  • 19
    • 67049169370 scopus 로고    scopus 로고
    • Modeling and predicting the helpfulness of online reviews
    • Y. Liu, X. Huang, A. An, and X. Yu. Modeling and predicting the helpfulness of online reviews. In ICDM, pages 443-452, 2008.
    • (2008) ICDM , pp. 443-452
    • Liu, Y.1    Huang, X.2    An, A.3    Yu, X.4
  • 20
    • 77954602906 scopus 로고    scopus 로고
    • Exploiting social context for review quality prediction
    • Y. Lu, P. Tsaparas, A. Ntoulas, and L. Polanyi. Exploiting social context for review quality prediction. In WWW, 2010.
    • (2010) WWW
    • Lu, Y.1    Tsaparas, P.2    Ntoulas, A.3    Polanyi, L.4
  • 21
    • 57349178382 scopus 로고    scopus 로고
    • Opinion integration through semi-supervised topic modeling
    • Y. Lu and C. Zhai. Opinion integration through semi-supervised topic modeling. In WWW, pages 121-130, 2008.
    • (2008) WWW , pp. 121-130
    • Lu, Y.1    Zhai, C.2
  • 22
    • 79959584952 scopus 로고    scopus 로고
    • Rated aspect summarization of short comments
    • Y. Lu, C. Zhai, and N. Sundaresan. Rated aspect summarization of short comments. In WWW, pages 131-140, 2009.
    • (2009) WWW , pp. 131-140
    • Lu, Y.1    Zhai, C.2    Sundaresan, N.3
  • 23
    • 80053270803 scopus 로고    scopus 로고
    • Opine: Extracting product features and opinions from reviews
    • A.-M. Popescu, B. Nguyen, and O. Etzioni. Opine: Extracting product features and opinions from reviews. In HLT/EMNLP, 2005.
    • (2005) HLT/EMNLP
    • Popescu, A.-M.1    Nguyen, B.2    Etzioni, O.3
  • 25
    • 77956033419 scopus 로고    scopus 로고
    • Redundancy, diversity and interdependent document relevance
    • F. Radlinski, P. N. Bennett, B. Carterette, and T. Joachims. Redundancy, diversity and interdependent document relevance. SIGIR Forum, 43(2):46-52, 2009.
    • (2009) SIGIR Forum , vol.43 , Issue.2 , pp. 46-52
    • Radlinski, F.1    Bennett, P.N.2    Carterette, B.3    Joachims, T.4
  • 26
    • 56449088596 scopus 로고    scopus 로고
    • Learning diverse rankings with multi-armed bandits
    • F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-armed bandits. In ICML, pages 784-791, 2008.
    • (2008) ICML , pp. 784-791
    • Radlinski, F.1    Kleinberg, R.2    Joachims, T.3
  • 27
    • 77954608294 scopus 로고    scopus 로고
    • Diversifying web search results
    • D. Rafiei, K. Bharat, and A. Shukla. Diversifying web search results. In WWW, 2010.
    • (2010) WWW
    • Rafiei, D.1    Bharat, K.2    Shukla, A.3
  • 28
    • 77956542736 scopus 로고    scopus 로고
    • Learning optimally diverse rankings over large document collections
    • A. Slivkins, F. Radlinski, and S. Gollapudi. Learning optimally diverse rankings over large document collections. In ICML, 2010.
    • (2010) ICML
    • Slivkins, A.1    Radlinski, F.2    Gollapudi, S.3
  • 29
    • 85048736582 scopus 로고    scopus 로고
    • Revrank: A fully unsupervised algorithm for selecting the most helpful book reviews
    • O. Tsur and A. Rappoport. Revrank: a fully unsupervised algorithm for selecting the most helpful book reviews. In ICWSM, 2009.
    • (2009) ICWSM
    • Tsur, O.1    Rappoport, A.2
  • 31
    • 77956195200 scopus 로고    scopus 로고
    • Latent aspect rating analysis on review text data: A rating regression approach
    • H. Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis on review text data: a rating regression approach. In KDD, pages 783-792, 2010.
    • (2010) KDD , pp. 783-792
    • Wang, H.1    Lu, Y.2    Zhai, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.