-
3
-
-
77956376882
-
Anomaly extraction in backbone networks using association rules
-
New York, NY, USA, ACM
-
D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian. Anomaly extraction in backbone networks using association rules. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, IMC'09, pages 28-34, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, IMC'09
, pp. 28-34
-
-
Brauckhoff, D.1
Dimitropoulos, X.2
Wagner, A.3
Salamatian, K.4
-
4
-
-
77951185124
-
Effective anomaly detection in sensor networks data streams
-
0
-
S. Budhaditya, D.-S. Pham, M. Lazarescu, and S. Venkatesh. Effective anomaly detection in sensor networks data streams. IEEE International Conference on Data Mining, ICDM2009, 0:722-727, 2009.
-
(2009)
IEEE International Conference on Data Mining, ICDM2009
, pp. 722-727
-
-
Budhaditya, S.1
Pham, D.-S.2
Lazarescu, M.3
Venkatesh, S.4
-
6
-
-
77951173993
-
Accelerated gradient method for multi-task sparse learning problem
-
X. Chen, W. Pan, J. T. Kwok, and J. G. Carbonell. Accelerated gradient method for multi-task sparse learning problem. In ICDM, pages 746-751, 2009.
-
(2009)
ICDM
, pp. 746-751
-
-
Chen, X.1
Pan, W.2
Kwok, J.T.3
Carbonell, J.G.4
-
7
-
-
77954749278
-
Data stream anomaly detection through principal subspace tracking
-
New York, NY, USA, ACM
-
P. H. dos Santos Teixeira and R. L. Milidíu. Data stream anomaly detection through principal subspace tracking. In SAC'10: Proceedings of the 2010 ACM Symposium on Applied Computing, pages 1609-1616, New York, NY, USA, 2010. ACM.
-
(2010)
SAC'10: Proceedings of the 2010 ACM Symposium on Applied Computing
, pp. 1609-1616
-
-
Dos Santos Teixeira, P.H.1
Milidíu, R.L.2
-
9
-
-
70849127921
-
Orden: Outlier region detection and exploration in sensor networks
-
C. Franke and M. Gertz. Orden: outlier region detection and exploration in sensor networks. In SIGMOD Conference, pages 1075-1078, 2009.
-
(2009)
SIGMOD Conference
, pp. 1075-1078
-
-
Franke, C.1
Gertz, M.2
-
10
-
-
67649637304
-
Online anomaly prediction for robust cluster systems
-
X. Gu and H. Wang. Online anomaly prediction for robust cluster systems. In ICDE, pages 1000-1011, 2009.
-
(2009)
ICDE
, pp. 1000-1011
-
-
Gu, X.1
Wang, H.2
-
11
-
-
70350635778
-
Network anomaly detection based on eigen equation compression
-
New York, NY, USA, ACM
-
S. Hirose, K. Yamanishi, T. Nakata, and R. Fujimaki. Network anomaly detection based on eigen equation compression. In KDD'09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1185-1194, New York, NY, USA, 2009. ACM.
-
(2009)
KDD'09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1185-1194
-
-
Hirose, S.1
Yamanishi, K.2
Nakata, T.3
Fujimaki, R.4
-
12
-
-
51349158726
-
In-network pca and anomaly detection
-
L. Huang, M. I. Jordan, A. Joseph, M. Garofalakis, and N. Taft. In-network pca and anomaly detection. In In NIPS, pages 617-624, 2006.
-
(2006)
NIPS
, pp. 617-624
-
-
Huang, L.1
Jordan, M.I.2
Joseph, A.3
Garofalakis, M.4
Taft, N.5
-
13
-
-
80052673524
-
Proximity-based anomaly detection using sparse structure learning
-
T. Idé, A. C. Lozano, N. Abe, and Y. Liu. Proximity-based anomaly detection using sparse structure learning. In SDM, pages 97-108, 2009.
-
(2009)
SDM
, pp. 97-108
-
-
Idé, T.1
Lozano, A.C.2
Abe, N.3
Liu, Y.4
-
14
-
-
49749143714
-
Computing correlation anomaly scores using stochastic nearest neighbors
-
Washington, DC, USA, IEEE Computer Society
-
T. Idé, S. Papadimitriou, and M. Vlachos. Computing correlation anomaly scores using stochastic nearest neighbors. In ICDM'07: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, pages 523-528, Washington, DC, USA, 2007. IEEE Computer Society.
-
(2007)
ICDM'07: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining
, pp. 523-528
-
-
Idé, T.1
Papadimitriou, S.2
Vlachos, M.3
-
17
-
-
71149103464
-
An accelerated gradient method for trace norm minimization
-
New York, NY, USA, ACM
-
S. Ji and J. Ye. An accelerated gradient method for trace norm minimization. In ICML'09: Proceedings of the 26th Annual International Conference on Machine Learning, pages 457-464, New York, NY, USA, 2009. ACM.
-
(2009)
ICML'09: Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 457-464
-
-
Ji, S.1
Ye, J.2
-
20
-
-
34548547034
-
HOT SAX: Efficiently finding the most unusual time series subsequence
-
DOI 10.1109/ICDM.2005.79, 1565683, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
-
E. Keogh, J. Lin, and A. Fu. Hot sax: Efficiently finding the most unusual time series subsequence. In Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM'05, pages 226-233, Washington, DC, USA, 2005. (Pubitemid 47385697)
-
(2005)
Proceedings - IEEE International Conference on Data Mining, ICDM
, pp. 226-233
-
-
Keogh, E.1
Lin, J.2
Fu, A.3
-
21
-
-
21844451952
-
Diagnosing network-wide traffic anomalies
-
DOI 10.1145/1030194.1015492, Computer Communication Review - Proceedings of ACM SIGCOMM 2004: Conference on Computer Communications
-
A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. In In ACM SIGCOMM, pages 219-230, 2004. (Pubitemid 40954882)
-
(2004)
Computer Communication Review
, vol.34
, Issue.4
, pp. 219-230
-
-
Lakhina, A.1
Crovella, M.2
Diot, C.3
-
22
-
-
33847290520
-
Mining anomalies using traffic feature distributions
-
DOI 10.1145/1090191.1080118
-
A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distributions. In In ACM SIGCOMM, pages 217-228, 2005. (Pubitemid 46323506)
-
(2005)
Computer Communication Review
, vol.35
, Issue.4
, pp. 217-228
-
-
Lakhina, A.1
Crovella, M.2
Diot, C.3
-
23
-
-
52649161757
-
Trajectory outlier detection: A partition-and-detect framework
-
J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect framework. In ICDE, pages 140-149, 2008.
-
(2008)
ICDE
, pp. 140-149
-
-
Lee, J.-G.1
Han, J.2
Li, X.3
-
25
-
-
77952757262
-
Mining distribution change in stock order streams
-
0003
-
X. Liu, X. Wu, H. Wang, R. Z. 0003, J. Bailey, and K. Ramamohanarao. Mining distribution change in stock order streams. In ICDE, pages 105-108, 2010.
-
(2010)
ICDE
, pp. 105-108
-
-
Liu, X.1
Wu, X.2
Wang, H.3
Bailey, J.4
Ramamohanarao, K.5
-
26
-
-
80052651080
-
Distributed detection/localization of change-points in high-dimensional network traffic data
-
abs/0909.5524
-
A. Lung-Yut-Fong, C. Lévy-Leduc, and O. Cappé. Distributed detection/localization of change-points in high-dimensional network traffic data. CoRR, abs/0909.5524, 2009.
-
(2009)
CoRR
-
-
Lung-Yut-fong, A.1
Lévy-Leduc, C.2
Cappé, O.3
-
28
-
-
36349029177
-
Sensitivity of PCA for traffic anomaly detection
-
DOI 10.1145/1269899.1254895, SIGMETRICS'07 - Proceedings of the 2007 International Conference on Measurement and Modeling of Computer Systems
-
H. Ringberg, A. Soule, J. Rexford, and C. Diot. Sensitivity of pca for traffic anomaly detection. In SIGMETRICS'07: Proceedings of the 2007 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pages 109-120, New York, NY, USA, 2007. ACM. (Pubitemid 350158077)
-
(2007)
Performance Evaluation Review
, vol.35
, Issue.1
, pp. 109-120
-
-
Ringberg, H.1
Soule, A.2
Rexford, J.3
Diot, C.4
-
30
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 290(5500):2319 - 2323, 2000. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
31
-
-
23944525543
-
A wireless sensor network for structural monitoring
-
SenSys'04 - Proceedings of the Second International Conference on Embedded Networked Sensor Systems
-
N. Xu, S. Rangwala, and et al. A wireless sensor network for structural monitoring. In IN SENSYS, pages 13-24, 2004. (Pubitemid 41563345)
-
(2004)
SenSys'04 - Proceedings of the Second International Conference on Embedded Networked Sensor Systems
, pp. 13-24
-
-
Xu, N.1
Rangwala, S.2
Chintalapudi, K.K.3
Ganesan, D.4
Broad, A.5
Govindan, R.6
Estrin, D.7
-
32
-
-
51849128252
-
Anomaly detection in high-dimensional network data streams: A case study
-
June
-
J. Zhang, Q. Gao, and H. Wang. Anomaly detection in high-dimensional network data streams: A case study. In IEEE International Conference on Intelligence and Security Informatics, 2008. ISI 2008., pages 251 -253, June 2008.
-
(2008)
IEEE International Conference on Intelligence and Security Informatics, 2008. ISI 2008
, pp. 251-253
-
-
Zhang, J.1
Gao, Q.2
Wang, H.3
-
33
-
-
33745309913
-
Sparse principal component analysis
-
DOI 10.1198/106186006X113430
-
H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2):265-286, 2006. (Pubitemid 43935978)
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, Issue.2
, pp. 265-286
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|