-
1
-
-
0002265766
-
Validated solutions of initial value problems for ordinary differential equations
-
Nedialkov N.S., Jackson K.R., Corliss G.F. Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 1999, 105(1):21-68.
-
(1999)
Appl. Math. Comput.
, vol.105
, Issue.1
, pp. 21-68
-
-
Nedialkov, N.S.1
Jackson, K.R.2
Corliss, G.F.3
-
4
-
-
32844454596
-
Cosy infinity version 9, Nuclear Instruments and Methods in Physics Research Section A
-
Accelerators, Spectrometers, Detectors and Associated Equipment 558 (1) (2006) 346-350, Proceedings of the 8th International Computational Accelerator Physics Conference - ICAP
-
K. Makino, M. Berz, Cosy infinity version 9, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 558 (1) (2006) 346-350, Proceedings of the 8th International Computational Accelerator Physics Conference - ICAP 2004.
-
(2004)
-
-
Makino, K.1
Berz, M.2
-
5
-
-
0345371405
-
Taylor models and other validated functional inclusion methods
-
Makino K., Berz M. Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 2003, 6(3):239-316.
-
(2003)
Int. J. Pure Appl. Math.
, vol.6
, Issue.3
, pp. 239-316
-
-
Makino, K.1
Berz, M.2
-
6
-
-
33845503029
-
Nonlinear mapping of Gaussian statistics: theory and applications to spacecraft trajectory design
-
Park R., Scheeres D. Nonlinear mapping of Gaussian statistics: theory and applications to spacecraft trajectory design. J. Guid. Control Dyn. 2006, 29(6):1367-1375.
-
(2006)
J. Guid. Control Dyn.
, vol.29
, Issue.6
, pp. 1367-1375
-
-
Park, R.1
Scheeres, D.2
-
7
-
-
58149488788
-
Application of high order expansions of two-point boundary value problems to astrodynamics
-
Di Lizia P., Armellin R., Lavagna M. Application of high order expansions of two-point boundary value problems to astrodynamics. Celestial Mech. Dynam. Astronom. 2008, 102(4):355-375.
-
(2008)
Celestial Mech. Dynam. Astronom.
, vol.102
, Issue.4
, pp. 355-375
-
-
Di Lizia, P.1
Armellin, R.2
Lavagna, M.3
-
8
-
-
80052638357
-
TIDES: a Taylor series integrator for differential equations
-
ACM Transactions on Mathematical Software (in press).
-
A. Abad, R. Barrio, F. Blesa, M. Rodríguez, TIDES: a Taylor series integrator for differential equations, ACM Transactions on Mathematical Software (2011) (in press).
-
(2011)
-
-
Abad, A.1
Barrio, R.2
Blesa, F.3
Rodríguez, M.4
-
9
-
-
0004149831
-
-
Wolfram Media, Inc., Champaign, IL
-
Wolfram S. The Mathematica® Book 1999, Wolfram Media, Inc., Champaign, IL. 4th ed.
-
(1999)
The Mathematica® Book
-
-
Wolfram, S.1
-
10
-
-
17944378468
-
Ordinary Differential Equations
-
SIAM, Philadelphia, PA
-
Hartman P. Ordinary Differential Equations. Classics in Applied Mathematics 2002, vol. 38. SIAM, Philadelphia, PA.
-
(2002)
Classics in Applied Mathematics
, vol.38
-
-
Hartman, P.1
-
11
-
-
33751249935
-
Sensitivity analysis of ODEs/DAEs using the Taylor series method
-
Barrio R. Sensitivity analysis of ODEs/DAEs using the Taylor series method. SIAM J. Sci. Comput. 2006, 27(6):1929-1947.
-
(2006)
SIAM J. Sci. Comput.
, vol.27
, Issue.6
, pp. 1929-1947
-
-
Barrio, R.1
-
12
-
-
79956062290
-
Breaking the limits: the Taylor series method
-
Barrio R., Rodríguez M., Abad A., Blesa F. Breaking the limits: the Taylor series method. Appl. Math. Comput. 2011, 217(20):7940-7954.
-
(2011)
Appl. Math. Comput.
, vol.217
, Issue.20
, pp. 7940-7954
-
-
Barrio, R.1
Rodríguez, M.2
Abad, A.3
Blesa, F.4
-
13
-
-
0020143282
-
Solving ordinary differential equations using Taylor series
-
Corliss G., Chang Y.F. Solving ordinary differential equations using Taylor series. ACM Trans. Math. Software 1982, 8(2):114-144.
-
(1982)
ACM Trans. Math. Software
, vol.8
, Issue.2
, pp. 114-144
-
-
Corliss, G.1
Chang, Y.F.2
-
14
-
-
13544262350
-
Performance of the Taylor series method for ODEs/DAEs
-
Barrio R. Performance of the Taylor series method for ODEs/DAEs. Appl. Math. Comput. 2005, 163(2):525-545.
-
(2005)
Appl. Math. Comput.
, vol.163
, Issue.2
, pp. 525-545
-
-
Barrio, R.1
-
15
-
-
27544484059
-
VSVO formulation of the Taylor method for the numerical solution of ODEs
-
Barrio R., Blesa F., Lara M. VSVO formulation of the Taylor method for the numerical solution of ODEs. Comput. Math. Appl. 2005, 50(1-2):93-111.
-
(2005)
Comput. Math. Appl.
, vol.50
, Issue.1-2
, pp. 93-111
-
-
Barrio, R.1
Blesa, F.2
Lara, M.3
-
17
-
-
0040763312
-
ATOMFT: solving ODEs and DAEs using Taylor series
-
Chang Y.F., Corliss G. ATOMFT: solving ODEs and DAEs using Taylor series. Comput. Math. Appl. 1994, 28(10-12):209-233.
-
(1994)
Comput. Math. Appl.
, vol.28
, Issue.10-12
, pp. 209-233
-
-
Chang, Y.F.1
Corliss, G.2
-
18
-
-
22544468094
-
A software package for the numerical integration of ODEs by means of high-order Taylor methods
-
Jorba Á, Zou M. A software package for the numerical integration of ODEs by means of high-order Taylor methods. Experiment. Math. 2005, 14(1):99-117.
-
(2005)
Experiment. Math.
, vol.14
, Issue.1
, pp. 99-117
-
-
Jorba Á1
Zou, M.2
-
19
-
-
0002402664
-
Algorithms for higher derivatives in many variables with applications to beam physics
-
SIAM, Philadelphia, PA
-
Berz M. Algorithms for higher derivatives in many variables with applications to beam physics. Automatic Differentiation of Algorithms 1991, 147-156. SIAM, Philadelphia, PA.
-
(1991)
Automatic Differentiation of Algorithms
, pp. 147-156
-
-
Berz, M.1
-
20
-
-
34047210346
-
Validated solutions of initial value problems for parametric odes
-
Lin Y., Stadtherr M.A. Validated solutions of initial value problems for parametric odes. Appl. Numer. Math. 2007, 57(10):1145-1162.
-
(2007)
Appl. Numer. Math.
, vol.57
, Issue.10
, pp. 1145-1162
-
-
Lin, Y.1
Stadtherr, M.A.2
-
22
-
-
0000329979
-
Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models
-
Berz M., Makino K. Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 1998, 4(4):361-369.
-
(1998)
Reliab. Comput.
, vol.4
, Issue.4
, pp. 361-369
-
-
Berz, M.1
Makino, K.2
-
23
-
-
0002249579
-
An introduction to automatic differentiation
-
SIAM, Philadelphia, PA
-
Rall L.B., Corliss G.F. An introduction to automatic differentiation. Computational Differentiation 1996, 1-18. SIAM, Philadelphia, PA.
-
(1996)
Computational Differentiation
, pp. 1-18
-
-
Rall, L.B.1
Corliss, G.F.2
-
24
-
-
0004293209
-
-
Prentice-Hall Inc., Englewood Cliffs, N.J.
-
Moore R.E. Interval Analysis 1966, Prentice-Hall Inc., Englewood Cliffs, N.J.
-
(1966)
Interval Analysis
-
-
Moore, R.E.1
-
25
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz E. Deterministic nonperiodic flow. J. Atmospheric Sci. 1963, 20:130-141.
-
(1963)
J. Atmospheric Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.1
-
27
-
-
34547422405
-
MPFR: a multiple-precision binary floating-point library with correct rounding
-
Fousse L., Hanrot G., Lefévre V., Pélissier P., Zimmermann P. MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Software 2007, 33(2):13:1-13:15.
-
(2007)
ACM Trans. Math. Software
, vol.33
, Issue.2
-
-
Fousse, L.1
Hanrot, G.2
Lefévre, V.3
Pélissier, P.4
Zimmermann, P.5
-
28
-
-
34247637165
-
A three-parametric study of the Lorenz model
-
Barrio R., Serrano S A three-parametric study of the Lorenz model. Physica D 2007, 229(1):43-51.
-
(2007)
Physica D
, vol.229
, Issue.1
, pp. 43-51
-
-
Barrio, R.1
Serrano, S.2
-
29
-
-
67650069838
-
Bounds for the chaotic region in the Lorenz model
-
Barrio R., Serrano S. Bounds for the chaotic region in the Lorenz model. Physica D 2009, 238(1):1615-1624.
-
(2009)
Physica D
, vol.238
, Issue.1
, pp. 1615-1624
-
-
Barrio, R.1
Serrano, S.2
|