메뉴 건너뛰기




Volumn , Issue , 2011, Pages 536-539

Hippocampal segmentation by random forest classification

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES; DIAGNOSIS; MAGNETIC RESONANCE; MAGNETIC RESONANCE IMAGING; NEURODEGENERATIVE DISEASES;

EID: 80052354251     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/MeMeA.2011.5966763     Document Type: Conference Paper
Times cited : (3)

References (10)
  • 1
    • 78951482115 scopus 로고    scopus 로고
    • Alzheimers Disease International
    • Alzheimers Disease International (2010), World Alzheimer Report
    • (2010) World Alzheimer Report
  • 2
    • 67651011400 scopus 로고    scopus 로고
    • Defining the human hippocampus in cerebral magnetic resonance imagesAn overview of current segmentation protocols
    • C. Konrad et al. (2009), 'Defining the human hippocampus in cerebral magnetic resonance imagesAn overview of current segmentation protocols', NeuroImage 47 pp. 1185-1195
    • (2009) NeuroImage , vol.47 , pp. 1185-1195
    • Konrad, C.1
  • 3
    • 79952070640 scopus 로고    scopus 로고
    • Novel Fast Marching for Automated Segmentation of the Hippocampus (FMASH): Method and validation on clinical data
    • In Press
    • C. A. Bishop et al. (2011), 'Novel Fast Marching for Automated Segmentation of the Hippocampus (FMASH): Method and validation on clinical data', NeuroImage Article In Press
    • (2011) NeuroImage Article
    • Bishop, C.A.1
  • 4
    • 52049108022 scopus 로고    scopus 로고
    • Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls
    • Morra et al. (2008), 'Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls ', NeuroImage 43 pp.59-68
    • (2008) NeuroImage , vol.43 , pp. 59-68
    • Morra1
  • 5
    • 61449113767 scopus 로고    scopus 로고
    • Realtime body pose recognition using 2D or 3D Haarlets
    • Van Den Bergh et al. (2009), 'Realtime body pose recognition using 2D or 3D Haarlets', Int. J. Computational Vision 83 pp. 72-84
    • (2009) Int. J. Computational Vision , vol.83 , pp. 72-84
    • Van Den Bergh1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001), Random Forests, Machine Learning 45 pp.5-32
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 67349140939 scopus 로고    scopus 로고
    • Performance measure characterization for evaluating neuroimage segmentation algorithms
    • Chang et al. (2009), 'Performance measure characterization for evaluating neuroimage segmentation algorithms', Neuroimage 47.
    • (2009) Neuroimage , vol.47
    • Chang1
  • 9
    • 68149162613 scopus 로고    scopus 로고
    • Automatic analysis of medial temporal lobe atrophy from structural MRIs for the early assessment of Alzheimer disease
    • P. Calvini al. (2009), 'Automatic analysis of medial temporal lobe atrophy from structural MRIs for the early assessment of Alzheimer disease', Medical Physics 36, No 8 pp. 3737-3747;
    • (2009) Medical Physics , vol.36 , Issue.8 , pp. 3737-3747
    • Calvini, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.