-
1
-
-
0001656246
-
-
Hase, W. L.; Buckowski, D. G.; Swamy, K. N. J. Phys. Chem. 1983, 87, 2754
-
(1983)
J. Phys. Chem.
, vol.87
, pp. 2754
-
-
Hase, W.L.1
Buckowski, D.G.2
Swamy, K.N.3
-
2
-
-
0027971670
-
-
Hase, W. L. Science 1994, 266, 998
-
(1994)
Science
, vol.266
, pp. 998
-
-
Hase, W.L.1
-
6
-
-
51749092196
-
-
Litovitz, A.; Keresztes, I.; Carpenter, B. K. J. Am. Chem. Soc. 2008, 130, 12085
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 12085
-
-
Litovitz, A.1
Keresztes, I.2
Carpenter, B.K.3
-
8
-
-
0037012868
-
-
Sun, L.; Song, K.; Hase, W. L. Science 2002, 296, 875
-
(2002)
Science
, vol.296
, pp. 875
-
-
Sun, L.1
Song, K.2
Hase, W.L.3
-
11
-
-
30744435122
-
-
Doubleday, C.; Suhrada, C. P.; Houk, K. N. J. Am. Chem. Soc. 2006, 128, 90
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 90
-
-
Doubleday, C.1
Suhrada, C.P.2
Houk, K.N.3
-
12
-
-
0033583717
-
-
Doubleday, C.; Nendel, M.; Houk, K. N.; Thweatt, D.; Page, M. J. Am. Chem. Soc. 1999, 121, 4720
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 4720
-
-
Doubleday, C.1
Nendel, M.2
Houk, K.N.3
Thweatt, D.4
Page, M.5
-
13
-
-
0001465311
-
-
Doubleday, C., Jr.; Bolton, K.; Hase, W. L. J. Am. Chem. Soc. 1997, 119, 5251
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 5251
-
-
Doubleday Jr., C.1
Bolton, K.2
Hase, W.L.3
-
17
-
-
0037196290
-
-
Reyes, M. B.; Lobkovsky, E. B.; Carpenter, B. K. J. Am. Chem. Soc. 2002, 124, 641
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 641
-
-
Reyes, M.B.1
Lobkovsky, E.B.2
Carpenter, B.K.3
-
18
-
-
0037055058
-
-
Debbert, S. L.; Carpenter, B. K.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 2002, 124, 7896
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 7896
-
-
Debbert, S.L.1
Carpenter, B.K.2
Hrovat, D.A.3
Borden, W.T.4
-
20
-
-
33745055198
-
-
Ussing, B. R.; Hang, C.; Singleton, D. A. J. Am. Chem. Soc. 2006, 128, 7594
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 7594
-
-
Ussing, B.R.1
Hang, C.2
Singleton, D.A.3
-
21
-
-
70449564274
-
-
Wang, Z.; Hirschi, J. S.; Singleton, D. A. Angew. Chem., Int. Ed. 2009, 48, 9156
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 9156
-
-
Wang, Z.1
Hirschi, J.S.2
Singleton, D.A.3
-
22
-
-
70349610330
-
-
Glowacki, D. R.; Marsden, S. P.; Pilling, M. J. J. Am. Chem. Soc. 2009, 131, 13896
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 13896
-
-
Glowacki, D.R.1
Marsden, S.P.2
Pilling, M.J.3
-
25
-
-
5344230834
-
-
Doering, W. V. E.; Gilbert, J. C.; Leermakers, P. A. Tetrahedron 1968, 24, 6863
-
(1968)
Tetrahedron
, vol.24
, pp. 6863
-
-
Doering, W.V.E.1
Gilbert, J.C.2
Leermakers, P.A.3
-
27
-
-
0141935388
-
-
Meagher, J. F.; Chao, K. J.; Barker, J. R.; Rabinovitch, B. S. J. Phys. Chem. 1974, 78, 2535
-
(1974)
J. Phys. Chem.
, vol.78
, pp. 2535
-
-
Meagher, J.F.1
Chao, K.J.2
Barker, J.R.3
Rabinovitch, B.S.4
-
31
-
-
70349448690
-
-
Carpenter, B. K.; Pittner, J.; Veis, L. J. Phys. Chem. A 2009, 113, 10557
-
(2009)
J. Phys. Chem. A
, vol.113
, pp. 10557
-
-
Carpenter, B.K.1
Pittner, J.2
Veis, L.3
-
32
-
-
33745769246
-
-
014317
-
Vayner, G.; Addepalli, S. V.; Song, K.; Hase, W. L. J. Chem. Phys. 2006, 125 014317
-
(2006)
J. Chem. Phys.
, vol.125
-
-
Vayner, G.1
Addepalli, S.V.2
Song, K.3
Hase, W.L.4
-
33
-
-
0038787885
-
-
Hase, W. L.; Song, K. H.; Gordon, M. S. Comput. Sci. Eng. 2003, 5, 36
-
(2003)
Comput. Sci. Eng.
, vol.5
, pp. 36
-
-
Hase, W.L.1
Song, K.H.2
Gordon, M.S.3
-
34
-
-
0036889839
-
-
Repasky, M. P.; Chandrasekhar, J.; Jorgensen, W. L. J. Comput. Chem. 2002, 23, 1601
-
(2002)
J. Comput. Chem.
, vol.23
, pp. 1601
-
-
Repasky, M.P.1
Chandrasekhar, J.2
Jorgensen, W.L.3
-
35
-
-
70350639423
-
-
Recent work (see:) has proposed a "canonical competitive nonstatistical model" (CCNM) to predict product branching ratios after dynamical bottlenecks of the type seen in the current reaction. The CCNM model divides the branching into "indirect" and "direct" components, the former being predicted using TST and the latter using phase-space theory. The large barriers for the reaction of the primary ozonide in the present work cause the CCNM model to allocate 100% of the reaction to the indirect component, so the CCNM model fails qualitatively to the extent that TST itself fails
-
Recent work (see: Zheng, J.; Papajak, E.; Truhlar, D. G. J. Am. Chem. Soc. 2009, 131, 15754) has proposed a "canonical competitive nonstatistical model" (CCNM) to predict product branching ratios after dynamical bottlenecks of the type seen in the current reaction. The CCNM model divides the branching into "indirect" and "direct" components, the former being predicted using TST and the latter using phase-space theory. The large barriers for the reaction of the primary ozonide in the present work cause the CCNM model to allocate 100% of the reaction to the indirect component, so the CCNM model fails qualitatively to the extent that TST itself fails
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 15754
-
-
Zheng, J.1
Papajak, E.2
Truhlar, D.G.3
-
36
-
-
0037026780
-
-
Schwarzer, D.; Hanisch, C.; Kutne, P.; Troe, J. J. Phys. Chem. A 2002, 106, 8019
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 8019
-
-
Schwarzer, D.1
Hanisch, C.2
Kutne, P.3
Troe, J.4
-
37
-
-
3442888796
-
-
Schwarzer, D.; Kutne, P.; Schröder, C.; Troe, J. J. Chem. Phys. 2004, 121, 1754
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 1754
-
-
Schwarzer, D.1
Kutne, P.2
Schröder, C.3
Troe, J.4
|