메뉴 건너뛰기




Volumn 5, Issue 3, 2011, Pages 231-246

Multiple imputation in principal component analysis

Author keywords

Bootstrap; EM algorithm; Missing values; Multiple imputation; Principal component analysis; Procrustes rotation

Indexed keywords

ALGORITHMS; RATING; ROTATION; UNCERTAINTY ANALYSIS;

EID: 80052041960     PISSN: 18625347     EISSN: 18625355     Source Type: Journal    
DOI: 10.1007/s11634-011-0086-7     Document Type: Article
Times cited : (107)

References (36)
  • 1
    • 0037006610 scopus 로고    scopus 로고
    • Principal component analysis of dissolution data with missing elements
    • Adams E, Walczak B, Vervaet C, Risha PG, Massart D (2002) Principal component analysis of dissolution data with missing elements. Int J Pharm 234: 169-178.
    • (2002) Int J Pharm , vol.234 , pp. 169-178
    • Adams, E.1    Walczak, B.2    Vervaet, C.3    Risha, P.G.4    Massart, D.5
  • 2
    • 0004050741 scopus 로고    scopus 로고
    • Multi-way analysis in the food industry-models, algorithms, and applications
    • Proc ICSLP 2000
    • Bro R (1998) Multi-way analysis in the food industry-models, algorithms, and applications. Tech. rep., MRI, EPG and EMA, Proc ICSLP 2000.
    • (1998) Tech. rep., MRI, EPG and EMA
    • Bro, R.1
  • 3
    • 39949083755 scopus 로고    scopus 로고
    • Cross-validation of component models: A critical look at current methods
    • Bro R, Kjeldahl K, Smilde AK, Kiers HAL (2008) Cross-validation of component models: A critical look at current methods. Anal Bioanal Chem 5: 1241-1251.
    • (2008) Anal Bioanal Chem , vol.5 , pp. 1241-1251
    • Bro, R.1    Kjeldahl, K.2    Smilde, A.K.3    Kiers, H.A.L.4
  • 4
    • 0005491325 scopus 로고
    • Models and uses of principal component analysis
    • J. Leeuwde, W. Heiser, J. Meulman, and F. Critchley (Eds.), Ram: DSWO Press
    • Caussinus H (1986) Models and uses of principal component analysis. In: de Leeuw J, Heiser W, Meulman J, Critchley F (eds) Multidimensional data analysis. DSWO Press, Ram, pp 149-178.
    • (1986) Multidimensional Data Analysis , pp. 149-178
    • Caussinus, H.1
  • 5
    • 33746609449 scopus 로고    scopus 로고
    • Assessing sample variability in the visualization techniques related to principal componenet analysis: Bootstrap and alternative simulation methods
    • Chateau F, Lebart L (1996) Assessing sample variability in the visualization techniques related to principal componenet analysis: Bootstrap and alternative simulation methods. In: COMPSTAT, pp 205-210.
    • (1996) COMPSTAT , pp. 205-210
    • Chateau, F.1    Lebart, L.2
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc B 39: 1-38.
    • (1977) J Royal Stat Soc B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 0003075991 scopus 로고
    • Ajustements de modèles linéaires et bilinéaires sous contraintes linéaires avec données manquantes
    • Denis JB (1991) Ajustements de modèles linéaires et bilinéaires sous contraintes linéaires avec données manquantes. Revue de Statistique Appliquée 39: 5-24.
    • (1991) Revue De Statistique Appliquée , vol.39 , pp. 5-24
    • Denis, J.B.1
  • 8
    • 35948933029 scopus 로고    scopus 로고
    • On the number of principal components: A test of dimensionality based on measurements of similarity between matrices
    • Dray S (2008) On the number of principal components: A test of dimensionality based on measurements of similarity between matrices. Comput Stat Data Anal 52: 2228-2237.
    • (2008) Comput Stat Data Anal , vol.52 , pp. 2228-2237
    • Dray, S.1
  • 10
    • 0018546040 scopus 로고
    • Lower rank approximation of matrices by least squares with any choice of weights
    • Gabriel KR, Zamir S (1979) Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21: 236-246.
    • (1979) Technometrics , vol.21 , pp. 236-246
    • Gabriel, K.R.1    Zamir, S.2
  • 14
    • 0032563620 scopus 로고    scopus 로고
    • Missing values in principal component analysis
    • Grung B, Manne R (1998) Missing values in principal component analysis. Chemiometr Intell Lab Syst 42: 125-139.
    • (1998) Chemiometr Intell Lab Syst , vol.42 , pp. 125-139
    • Grung, B.1    Manne, R.2
  • 16
    • 77956916974 scopus 로고    scopus 로고
    • Practical approaches to principal component analysis in the presence of missing values
    • Ilin A, Raiko T (2010) Practical approaches to principal component analysis in the presence of missing values. J Mach Learn Res 11: 1957-2000.
    • (2010) J Mach Learn Res , vol.11 , pp. 1957-2000
    • Ilin, A.1    Raiko, T.2
  • 19
    • 0031517826 scopus 로고    scopus 로고
    • Weighted least squares fitting using ordinary least squares algorithms
    • Kiers HAL (1997) Weighted least squares fitting using ordinary least squares algorithms. Psychometrica 62: 251-266.
    • (1997) Psychometrica , vol.62 , pp. 251-266
    • Kiers, H.A.L.1
  • 22
    • 21844498053 scopus 로고
    • Application of the parametric bootstrap to models that incorporate a singular value decomposition
    • Milan M (1995) Application of the parametric bootstrap to models that incorporate a singular value decomposition. J Royal Stat Soc Ser C 44: 31-49.
    • (1995) J Royal Stat Soc Ser C , vol.44 , pp. 31-49
    • Milan, M.1
  • 23
    • 84962366252 scopus 로고    scopus 로고
    • Netflix
    • Netflix (2009) Netflix challenge. http://www. netflixprize. com.
    • (2009) Netflix challenge
  • 25
    • 19044395321 scopus 로고    scopus 로고
    • How many principal components? stopping rules for determining the number of non-trivial axes revisited
    • Peres-Neto PR, Jackson DA, Somers KM (2005) How many principal components? stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49: 974-997.
    • (2005) Comput Stat Data Anal , vol.49 , pp. 974-997
    • Peres-Neto, P.R.1    Jackson, D.A.2    Somers, K.M.3
  • 26
    • 84984933198 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
    • R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www. R-project. org, ISBN 3-900051-07-0.
    • (2009) R: A Language and Environment for Statistical Computing
  • 27
    • 54249102720 scopus 로고    scopus 로고
    • Principal component analysis for sparse high-dimensional data
    • Raiko T, Ilin A, Karhunen J (2007) Principal component analysis for sparse high-dimensional data. In: Neural Information Processing, pp 566-575.
    • (2007) Neural Information Processing , pp. 566-575
    • Raiko, T.1    Ilin, A.2    Karhunen, J.3
  • 30
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for missing-data problems: A data analyst's perspective
    • Schafer JL, Olsen MK (1998) Multiple imputation for missing-data problems: A data analyst's perspective. Multivar Behav Res 33: 545-571.
    • (1998) Multivar Behav Res , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 32
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82: 805-811.
    • (1987) J Am Stat Assoc , vol.82 , pp. 805-811
    • Tanner, M.A.1    Wong, W.H.2
  • 33
    • 36549086475 scopus 로고    scopus 로고
    • Estimating confidence intervals for principal component loadings: a comparaison between the bootstrap and asymptotic results
    • Timmerman ME, Kiers HAL, Smilde AK (2007) Estimating confidence intervals for principal component loadings: a comparaison between the bootstrap and asymptotic results. Br J Math Stat Psychol 60: 295-314.
    • (2007) Br J Math Stat Psychol , vol.60 , pp. 295-314
    • Timmerman, M.E.1    Kiers, H.A.L.2    Smilde, A.K.3
  • 34
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping M, Bishop CM (1999) Probabilistic principal component analysis. J Royal Stat Soc B 61: 611-622.
    • (1999) J Royal Stat Soc B , vol.61 , pp. 611-622
    • Tipping, M.1    Bishop, C.M.2
  • 35
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • van Buuren S (2007) Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res 16: 219-242.
    • (2007) Stat Methods Med Res , vol.16 , pp. 219-242
    • van Buuren, S.1
  • 36
    • 0003000612 scopus 로고
    • Nonlinear estimation by iterative least squares procedures
    • F. N. David (Ed.), New York: Wiley
    • Wold H (1966) Nonlinear estimation by iterative least squares procedures. In: David FN (eds) Research Papers in Statistics: Festschrift for Jerzy Neyman. Wiley, New York, pp 411-444.
    • (1966) Research Papers in Statistics: Festschrift for Jerzy Neyman , pp. 411-444
    • Wold, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.