-
1
-
-
0347718066
-
Fast algorithms for projected clustering
-
Philadelphia, PA
-
C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park. Fast algorithms for projected clustering. In Proceedings of the ACM SIGMOD CONFERENCE on Management of Data, pages 61-72, Philadelphia, PA, 1999.
-
(1999)
Proceedings of the ACM SIGMOD CONFERENCE on Management of Data
, pp. 61-72
-
-
Aggarwal, C.1
Procopiuc, C.2
Wolf, J.3
Yu, P.4
Park, J.5
-
2
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
Seattle, WA
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM SIGMOD Conference on Management of Data, pages 94-105, Seattle, WA, 1998.
-
(1998)
Proceedings of the ACM SIGMOD Conference on Management of Data
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
4
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
Philadelphia, PA
-
Ankerst M., Breunig M. M., Kriegel H.-P., Sander J. OPTICS: Ordering Points To Identify the Clustering Structure. Proc. ACM SIG-MOD Int. Conf. on Management of Data (SIGMOD'99), Philadelphia, PA, pages 49-60, 1999.
-
(1999)
Proc. ACM SIG-MOD Int. Conf. on Management of Data (SIGMOD'99)
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.-P.3
Sander, J.4
-
5
-
-
4644256188
-
-
University of California, Irvine, Department of Information and Computer Science
-
S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. University of California, Irvine, Department of Information and Computer Science.
-
The UCI KDD Archive
-
-
Bay, S.D.1
-
8
-
-
38949109632
-
-
Bulletin of the Technical Committee on Data Engineering
-
D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, J. H. Hellerstein, Y. Ioannidis, H. V. Jagadish, T. Johnson, R. Ng, V. Poosala, K. A. Ross, and K. C. Servcik. The New Jersey data resuction report. Bulletin of the Technical Committee on Data Engineering, 1997.
-
(1997)
The New Jersey Data Resuction Report
-
-
Barbara, D.1
DuMouchel, W.2
Faloutsos, C.3
Haas, P.J.4
Hellerstein, J.H.5
Ioannidis, Y.6
Jagadish, H.V.7
Johnson, T.8
Ng, R.9
Poosala, V.10
Ross, K.A.11
Servcik, K.C.12
-
10
-
-
0032091595
-
Cure: An efficient clustering algorithm for large databases
-
Seattle, WA
-
S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. In Proceedings of the ACM SIG-MOD conference on Management of Data, pages 73-84, Seattle, WA, 1998.
-
(1998)
Proceedings of the ACM SIG-MOD Conference on Management of Data
, pp. 73-84
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
17
-
-
51249111221
-
A data set oriented approach for clustering algorithm selection
-
Maria Halkidi, Michalis Vazirgiannis. A Data Set Oriented Approach for Clustering Algorithm Selection. In PKDD, 2001.
-
(2001)
PKDD
-
-
Halkidi, M.1
Vazirgiannis, M.2
-
18
-
-
14944348667
-
Clustering validity assessment: Finding the optimal partitioning of a data set
-
Maria Halkidi, Michalis Vazirgiannis. Clustering Validity Assessment: Finding the Optimal Partitioning of a Data Set. In ICDM, 2001.
-
(2001)
ICDM
-
-
Halkidi, M.1
Vazirgiannis, M.2
-
20
-
-
0003136237
-
Efficient and effective clustering methods for spatial data mining
-
Santiago, Chile
-
R. T. Ng and J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining. In Proceedings of the 20th VLDB Conference, pages 144-155, Santiago, Chile, 1994.
-
(1994)
Proceedings of the 20th VLDB Conference
, pp. 144-155
-
-
Ng, R.T.1
Han, J.2
-
25
-
-
84994158589
-
STING: A statistical information grid approach to spatial data mining
-
Athens, Greece
-
W. Wang, J. Yang, and R. Muntz. STING: A Statistical Information Grid Approach to Spatial Data Mining. In Proceedings of the 23rd VLDB Conference, pages 186-195, Athens, Greece, 1997.
-
(1997)
Proceedings of the 23rd VLDB Conference
, pp. 186-195
-
-
Wang, W.1
Yang, J.2
Muntz, R.3
-
27
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
Montreal, Canada
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. In Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, pages 103-114, Montreal, Canada, 1996.
-
(1996)
Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|