메뉴 건너뛰기




Volumn , Issue , 2008, Pages 243-260

Electrospinning techniques to control deposition and structural alignment of nanofibrous scaffolds for cellular orientation and cytoskeletal reorganization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 80051933317     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (7)

References (52)
  • 1
    • 0242607105 scopus 로고    scopus 로고
    • Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering
    • Xu C.Y., Inai R., Kotaki M. et al. 2004. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 25:877-886.
    • (2004) Biomaterials , vol.25 , pp. 877-886
    • Xu, C.Y.1    Inai, R.2    Kotaki, M.3
  • 2
    • 10044289544 scopus 로고    scopus 로고
    • Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering
    • Yang F., Murugan R., Wang S. et al. 2005. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603-2610.
    • (2005) Biomaterials , vol.26 , pp. 2603-2610
    • Yang, F.1    Murugan, R.2    Wang, S.3
  • 3
    • 4744359026 scopus 로고    scopus 로고
    • Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast
    • Lee C.H., Shin H.J., Cho I.H. et al. 2005. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26:1261-1270.
    • (2005) Biomaterials , vol.26 , pp. 1261-1270
    • Lee, C.H.1    Shin, H.J.2    Cho, I.H.3
  • 4
    • 0002487683 scopus 로고
    • Contact guidance of cultured tissue cells: A survey of potentially relevant properties of the substratum
    • R. Bellairs, A. Curtis, G. Dunn, Cambridge: Cambridge University Press
    • Dunn G.A. 1982. Contact guidance of cultured tissue cells: A survey of potentially relevant properties of the substratum. In Cell Behaviour, ed. R. Bellairs, A. Curtis, G. Dunn, 247-280. Cambridge: Cambridge University Press.
    • (1982) Cell Behaviour , pp. 247-280
    • Dunn, G.A.1
  • 5
    • 0031468107 scopus 로고    scopus 로고
    • Contact guidance of CNS neuritis on grooved quartz: Influence of groove dimensions, neuronal age and cell type
    • Rajnicek A.M., Britland S., and McCaig C.D. 1997. Contact guidance of CNS neuritis on grooved quartz: Influence of groove dimensions, neuronal age and cell type. J Cell Sci 110:2905-2913.
    • (1997) J Cell Sci , vol.110 , pp. 2905-2913
    • Rajnicek, A.M.1    Britland, S.2    McCaig, C.D.3
  • 6
    • 0033219924 scopus 로고    scopus 로고
    • Measurement of orientation and distribution of cellular alignment and cytoskeletal organization
    • Karlon W.J., Hsu P.-P., Li S. et al. 1999. Measurement of orientation and distribution of cellular alignment and cytoskeletal organization. Ann Biomed Eng 27:712-720.
    • (1999) Ann Biomed Eng , vol.27 , pp. 712-720
    • Karlon, W.J.1    Hsu, P.-P.2    Li, S.3
  • 7
    • 0037212674 scopus 로고    scopus 로고
    • Cell orientation determines the alignment of cell-produced collagenous matrix
    • Wang J.H.-C., Jia F., Gilbert T.W. et al. 2003. Cell orientation determines the alignment of cell-produced collagenous matrix. J Biomech 36:97-102.
    • (2003) J Biomech , vol.36 , pp. 97-102
    • Wang, J.H.-C.1    Jia, F.2    Gilbert, T.W.3
  • 8
    • 0002550949 scopus 로고
    • Articular cartilage structure in humans and experimental animals
    • K.F. Kuettner, R. Schleyerbach, J.G. Peyron, V.C. Hascall, New York: Raven Press, Ltd
    • Hunziker E.B. 1992. Articular cartilage structure in humans and experimental animals. In Articular Cartilage and Osteoarthritis, ed. K.F. Kuettner, R. Schleyerbach, J.G. Peyron, V.C. Hascall, 183-199. New York: Raven Press, Ltd.
    • (1992) Articular Cartilage and Osteoarthritis , pp. 183-199
    • Hunziker, E.B.1
  • 9
    • 0035220677 scopus 로고    scopus 로고
    • Cartilage substitutes: Overview of basic science and treatment options
    • Jackson D.W., Scheer M.J., and Simon T.M. 2001. Cartilage substitutes: Overview of basic science and treatment options. J Am Acad Orthop Surg 9:37-52.
    • (2001) J Am Acad Orthop Surg , vol.9 , pp. 37-52
    • Jackson, D.W.1    Scheer, M.J.2    Simon, T.M.3
  • 10
    • 0036638042 scopus 로고    scopus 로고
    • Quantitative structural organization of normal adult human articular cartilage
    • Hunziker E.B., Quinn T.M., and Haeuselmann H.-J. 2002. Quantitative structural organization of normal adult human articular cartilage. Osteoarth Cartilage 10:564-572.
    • (2002) Osteoarth Cartilage , vol.10 , pp. 564-572
    • Hunziker, E.B.1    Quinn, T.M.2    Haeuselmann, H.-J.3
  • 11
    • 0036151502 scopus 로고    scopus 로고
    • Collagen of articular cartilage
    • Eyre D. 2002. Collagen of articular cartilage. Arthritis Res 4:30-35.
    • (2002) Arthritis Res , vol.4 , pp. 30-35
    • Eyre, D.1
  • 12
    • 0033064676 scopus 로고    scopus 로고
    • Altered mechanics of cartilage with osteoarthritis: Human osteoarthritis and an experimental model of joint degeneration
    • Setton L.A., Elliott D.M., and Mow V.C. 1999. Altered mechanics of cartilage with osteoarthritis: Human osteoarthritis and an experimental model of joint degeneration. Osteoarth Cartilage 7:2-14.
    • (1999) Osteoarth Cartilage , vol.7 , pp. 2-14
    • Setton, L.A.1    Elliott, D.M.2    Mow, V.C.3
  • 13
    • 0043208840 scopus 로고    scopus 로고
    • Articular cartilage functional histomorphology and mechanobiology: A research perspective
    • Wong M. and Carter D.R. 2003. Articular cartilage functional histomorphology and mechanobiology: A research perspective. Bone 33:1-13.
    • (2003) Bone , vol.33 , pp. 1-13
    • Wong, M.1    Carter, D.R.2
  • 14
    • 0042242744 scopus 로고    scopus 로고
    • Tissue engineering of stratified articular cartilage from chondrocyte subpopulations
    • Klein T.J., Schumacher B.L., Schmidt T.A. et al. 2003. Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. Osteoarth Cartilage 11:595-602.
    • (2003) Osteoarth Cartilage , vol.11 , pp. 595-602
    • Klein, T.J.1    Schumacher, B.L.2    Schmidt, T.A.3
  • 15
    • 0042887458 scopus 로고    scopus 로고
    • Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage
    • Kim T.-K., Sharma B., Williams C.G. et al. 2003. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarth Cartilage 11:653-664.
    • (2003) Osteoarth Cartilage , vol.11 , pp. 653-664
    • Kim, T.-K.1    Sharma, B.2    Williams, C.G.3
  • 16
    • 2942536383 scopus 로고    scopus 로고
    • Engineering structurally organized cartilage and bone tissues
    • Sharma B. and Elisseeff J.H. 2004. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng 32:148-159.
    • (2004) Ann Biomed Eng , vol.32 , pp. 148-159
    • Sharma, B.1    Elisseeff, J.H.2
  • 17
    • 27744606356 scopus 로고    scopus 로고
    • Polymer scaffolds fabricated with poresize gradients as a model for studying the zonal organization within tissue-engineering cartilage constructs
    • Woodfield T.B.F., Van Blitterswijk C.A., De Wijn J. et al. 2005. Polymer scaffolds fabricated with poresize gradients as a model for studying the zonal organization within tissue-engineering cartilage constructs. Tissue Eng 11:1297-1311.
    • (2005) Tissue Eng , vol.11 , pp. 1297-1311
    • Woodfield, T.B.F.1    Van Blitterswijk, C.A.2    De Wijn, J.3
  • 18
    • 33847074606 scopus 로고    scopus 로고
    • Designing zonal organization into tissue-engineered cartilage
    • Sharma B., Williams C.G., Kim T.K. et al. 2007. Designing zonal organization into tissue-engineered cartilage. Tissue Eng 13:405-414.
    • (2007) Tissue Eng , vol.13 , pp. 405-414
    • Sharma, B.1    Williams, C.G.2    Kim, T.K.3
  • 19
    • 0346123065 scopus 로고    scopus 로고
    • Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds
    • Li W.-J., Danielson K.G., Alexander P.G. et al. 2003. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 67:1105-1114.
    • (2003) J Biomed Mater Res A , vol.67 , pp. 1105-1114
    • Li, W.-J.1    Danielson, K.G.2    Alexander, P.G.3
  • 20
    • 3342981338 scopus 로고    scopus 로고
    • A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells
    • Li W.-J., Tuli R., Okafor C. et al. 2005. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599-609.
    • (2005) Biomaterials , vol.26 , pp. 599-609
    • Li, W.-J.1    Tuli, R.2    Okafor, C.3
  • 21
    • 15244353095 scopus 로고    scopus 로고
    • Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold
    • Li W.-J., Tuli R., Huang X. et al. 2005. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158-5166.
    • (2005) Biomaterials , vol.26 , pp. 5158-5166
    • Li, W.-J.1    Tuli, R.2    Huang, X.3
  • 22
    • 33645450704 scopus 로고    scopus 로고
    • Cartilage tissue engineering: Its potential and uses
    • Kuo C.K., Li W.-J., Mauck R.L. et al. 2003. Cartilage tissue engineering: Its potential and uses. Curr Opin Rheumatol 18:64-73.
    • (2003) Curr Opin Rheumatol , vol.18 , pp. 64-73
    • Kuo, C.K.1    Li, W.-J.2    Mauck, R.L.3
  • 23
    • 33749552865 scopus 로고    scopus 로고
    • Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrsopun PLGA nanofiber scaffold
    • Xin X., Hussain M., and Mao J.J. 2007. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrsopun PLGA nanofiber scaffold. Biomaterials 28:316-325.
    • (2007) Biomaterials , vol.28 , pp. 316-325
    • Xin, X.1    Hussain, M.2    Mao, J.J.3
  • 24
    • 17144376020 scopus 로고    scopus 로고
    • Potential of nanofiber matrix as tissue-engineering scaffolds
    • Ma Z., Kotaki M., Inai R. et al. 2005. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11:101-109.
    • (2005) Tissue Eng , vol.11 , pp. 101-109
    • Ma, Z.1    Kotaki, M.2    Inai, R.3
  • 26
    • 0034975453 scopus 로고    scopus 로고
    • Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century
    • Caplan A.I. and Bruder S.P. 2001. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends Molec Med 7:259-264.
    • (2001) Trends Molec Med , vol.7 , pp. 259-264
    • Caplan, A.I.1    Bruder, S.P.2
  • 27
    • 0037963685 scopus 로고    scopus 로고
    • Adult mesenchymal stem cells and cell-based tissue engineering
    • Tuan R.S., Boland G., and Tuli R. 2002. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32-45.
    • (2002) Arthritis Res Ther , vol.5 , pp. 32-45
    • Tuan, R.S.1    Boland, G.2    Tuli, R.3
  • 28
    • 20444429578 scopus 로고    scopus 로고
    • Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy
    • Baksh D., Song L., and Tuan R.S. 2004. Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy. J Cell Molec Med 8:301-316.
    • (2004) J Cell Molec Med , vol.8 , pp. 301-316
    • Baksh, D.1    Song, L.2    Tuan, R.S.3
  • 29
    • 4544359550 scopus 로고    scopus 로고
    • Mesenchymal stem cells: Isolation and therapeutics
    • Alhadlaq A. and Mao J.J. 2004. Mesenchymal stem cells: Isolation and therapeutics. Stem Cells Dev 13:436-448.
    • (2004) Stem Cells Dev , vol.13 , pp. 436-448
    • Alhadlaq, A.1    Mao, J.J.2
  • 31
    • 12344282814 scopus 로고    scopus 로고
    • Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, architecture, and nutrient mixing
    • Karande T.S., Ong J.L., and Agrawal C.M. 2004. Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32:1728-1743.
    • (2004) Ann Biomed Eng , vol.32 , pp. 1728-1743
    • Karande, T.S.1    Ong, J.L.2    Agrawal, C.M.3
  • 32
    • 0009774721 scopus 로고    scopus 로고
    • Bending instability of electrically charged liquid jets of polymer solutions in electrospinning
    • Reneker D.H., Yarin A.L., Fong H. et al. 2000. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531-4547.
    • (2000) J Appl Phys , vol.87 , pp. 4531-4547
    • Reneker, D.H.1    Yarin, A.L.2    Fong, H.3
  • 33
    • 34248635425 scopus 로고    scopus 로고
    • Electrospinning of nanofibers from polymer solutions and melts
    • H. Aref, E. van der Giessen, Oxford: Elsevier
    • Reneker D.H, Yarin A.L, Zussman E. et al. 2007. Electrospinning of nanofibers from polymer solutions and melts. In Advances in Applied Mechanics, Vol. 41, ed. H. Aref, E. van der Giessen, 43-195. Oxford: Elsevier.
    • (2007) Advances in Applied Mechanics , vol.41 , pp. 43-195
    • Reneker, D.H.1    Yarin, A.L.2    Zussman, E.3
  • 35
    • 0141683910 scopus 로고    scopus 로고
    • A review on polymer nanofibers by electrospinning and their applications in nanocomposites
    • Huang Z.M., Zhang Y.Z., Kotaki M. et al. 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci Technol 63:2223-2253.
    • (2003) Composites Sci Technol , vol.63 , pp. 2223-2253
    • Huang, Z.M.1    Zhang, Y.Z.2    Kotaki, M.3
  • 36
    • 3042657316 scopus 로고    scopus 로고
    • Spinning continuous fibers for nanotechnology
    • Dzenis Y. 2004. Spinning continuous fibers for nanotechnology. Science 304:1917-1919.
    • (2004) Science , vol.304 , pp. 1917-1919
    • Dzenis, Y.1
  • 38
    • 1042301245 scopus 로고    scopus 로고
    • In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold
    • Shin M., Yoshimoto H., and Vacanti J.P. 2004. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 10:33-41.
    • (2004) Tissue Eng , vol.10 , pp. 33-41
    • Shin, M.1    Yoshimoto, H.2    Vacanti, J.P.3
  • 39
    • 0026059172 scopus 로고
    • Physico-mechanical properties of degradable polymers used in medical applications: A comparative study
    • Engelberg I. and Kohn J. 1991. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 12:292-304.
    • (1991) Biomaterials , vol.12 , pp. 292-304
    • Engelberg, I.1    Kohn, J.2
  • 40
    • 33749847540 scopus 로고    scopus 로고
    • Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning
    • Thomas V., Jose M.V., Chowdhury S. et al. 2006. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Sci Polym Ed 17:969-984.
    • (2006) J Biomater Sci Polym Ed , vol.17 , pp. 969-984
    • Thomas, V.1    Jose, M.V.2    Chowdhury, S.3
  • 41
    • 0035444059 scopus 로고    scopus 로고
    • Electrostatic field-assisted alignment of electrospun nanofibres
    • Theron A., Zussman E., and Yarin A.L. 2001. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12:384-390.
    • (2001) Nanotechnology , vol.12 , pp. 384-390
    • Theron, A.1    Zussman, E.2    Yarin, A.L.3
  • 42
    • 0037428697 scopus 로고    scopus 로고
    • Formation of nanofiber crossbars in electrospinning
    • Zussman E., Theron A., and Yarin A.L. 2003. Formation of nanofiber crossbars in electrospinning. Appl Phys Lett 82:973-975.
    • (2003) Appl Phys Lett , vol.82 , pp. 973-975
    • Zussman, E.1    Theron, A.2    Yarin, A.L.3
  • 43
    • 0035908151 scopus 로고    scopus 로고
    • Controlled deposition of electrospun poly (ethylene oxide) fibers
    • Deitzel J.M., Kleinmeyer J.D., Hirvonen J.K. et al. 2001. Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer 42:8163-8170.
    • (2001) Polymer , vol.42 , pp. 8163-8170
    • Deitzel, J.M.1    Kleinmeyer, J.D.2    Hirvonen, J.K.3
  • 44
    • 1542573798 scopus 로고    scopus 로고
    • Electrospinning of continuous aligned polymer fibers
    • Sundaray B., Subramanian V., Natarajan T.S. et al. 2004. Electrospinning of continuous aligned polymer fibers. Appl Phys Lett 84:1222-1224.
    • (2004) Appl Phys Lett , vol.84 , pp. 1222-1224
    • Sundaray, B.1    Subramanian, V.2    Natarajan, T.S.3
  • 45
    • 1642392121 scopus 로고    scopus 로고
    • Electrospinning nanofibers as uniaxially aligned arrays and layerby-layer stacked films
    • Li D., Wang Y., and Xia Y. 2004. Electrospinning nanofibers as uniaxially aligned arrays and layerby-layer stacked films. Adv Mat 16:361-366.
    • (2004) Adv Mat , vol.16 , pp. 361-366
    • Li, D.1    Wang, Y.2    Xia, Y.3
  • 46
    • 33645841647 scopus 로고    scopus 로고
    • Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy
    • Courtney T., Sacks M.S., Stankus J. et al. 2006. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27:3631-3638.
    • (2006) Biomaterials , vol.27 , pp. 3631-3638
    • Courtney, T.1    Sacks, M.S.2    Stankus, J.3
  • 47
    • 33846582053 scopus 로고    scopus 로고
    • The effect of nanofiber alignment on the maturation of engineered meniscus constructs
    • Baker B.M. and Mauck R.L. 2007. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967-1977.
    • (2007) Biomaterials , vol.28 , pp. 1967-1977
    • Baker, B.M.1    Mauck, R.L.2
  • 48
    • 34247892161 scopus 로고    scopus 로고
    • Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering
    • Li W.J., Mauck R.L., Cooper J.A. et al. 2007. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686-1693.
    • (2007) J Biomech , vol.40 , pp. 1686-1693
    • Li, W.J.1    Mauck, R.L.2    Cooper, J.A.3
  • 49
    • 0035977141 scopus 로고    scopus 로고
    • Confocal microscopy: Applications in materials science
    • Hoheisel W., Jacobsen W., Luettge B. et al. 2001. Confocal microscopy: Applications in materials science. Macromol Mater Eng 286:663-668.
    • (2001) Macromol Mater Eng , vol.286 , pp. 663-668
    • Hoheisel, W.1    Jacobsen, W.2    Luettge, B.3
  • 50
    • 0037400540 scopus 로고    scopus 로고
    • A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
    • Yoshimoto H., Shin Y.M., Terai H. et al. 2003. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077-2082.
    • (2003) Biomaterials , vol.24 , pp. 2077-2082
    • Yoshimoto, H.1    Shin, Y.M.2    Terai, H.3
  • 51
    • 23244450260 scopus 로고    scopus 로고
    • Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces
    • Curran J.M., Chen R., and Hunt J.A. 2005. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 26:7057-7067.
    • (2005) Biomaterials , vol.26 , pp. 7057-7067
    • Curran, J.M.1    Chen, R.2    Hunt, J.A.3
  • 52
    • 0033808163 scopus 로고    scopus 로고
    • The chondrocyte cytoskeleton in mature articular cartilage: Structure and distribution of actin, tubulin, and vimentin filaments
    • Langelier E., Suetterlin R., Hoemann C.D. et al. 2000. The chondrocyte cytoskeleton in mature articular cartilage: Structure and distribution of actin, tubulin, and vimentin filaments. J Histochem Cytochem 48:1307-1320.
    • (2000) J Histochem Cytochem , vol.48 , pp. 1307-1320
    • Langelier, E.1    Suetterlin, R.2    Hoemann, C.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.