메뉴 건너뛰기




Volumn 27, Issue 17, 2011, Pages 2459-2462

Simulating systems genetics data with SysGenSIM

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; COMPUTER PROGRAM; COMPUTER SIMULATION; GENE EXPRESSION; GENE REGULATORY NETWORK; GENOTYPE; PHENOTYPE;

EID: 80051929549     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr407     Document Type: Article
Times cited : (33)

References (39)
  • 1
    • 44149084690 scopus 로고    scopus 로고
    • Using genetic markers to orient the edges in quantitative trait networks: the NEO software
    • Aten,J.E. et al. (2008) Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Syst. Biol., 2, 34.
    • (2008) BMC Syst. Biol. , vol.2 , pp. 34
    • Aten, J.E.1
  • 2
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • Bansal,M. et al. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 78.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 78
    • Bansal, M.1
  • 3
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi,A.L. and Albert,R. (1999) Emergence of scaling in random networks. Science, 286, 509-512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 4
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi,A.L. and Oltvai,Z.N. (2004) Network biology: understanding the cell's functional organization. Nat. Rev. Genet., 5, 101-113.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 5
    • 13444306165 scopus 로고    scopus 로고
    • The landscape of genetic complexity across 5, 700 gene expression traits in yeast
    • Brem,R.B. and Kruglyak,L. (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl Acad. Sci. USA, 102, 1572-1577.
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 1572-1577
    • Brem, R.B.1    Kruglyak, L.2
  • 6
    • 0037177625 scopus 로고    scopus 로고
    • Genetic dissection of transcriptional regulation in budding yeast
    • Brem,R.B. et al. (2002) Genetic dissection of transcriptional regulation in budding yeast. Science, 296, 752-755.
    • (2002) Science , vol.296 , pp. 752-755
    • Brem, R.B.1
  • 7
    • 49849090353 scopus 로고    scopus 로고
    • Inferring causal phenotype networks from segregating populations
    • Chaibub Neto,E. et al. (2008) Inferring causal phenotype networks from segregating populations. Genetics, 179, 1089-1100.
    • (2008) Genetics , vol.179 , pp. 1089-1100
    • Chaibub Neto, E.1
  • 8
    • 67849118749 scopus 로고    scopus 로고
    • Expression quantitative trait Loci mapping with multivariate sparse partial least squares regression
    • Chun,H. and Keles,S. (2009) Expression quantitative trait Loci mapping with multivariate sparse partial least squares regression. Genetics, 182, 79-90.
    • (2009) Genetics , vol.182 , pp. 79-90
    • Chun, H.1    Keles, S.2
  • 9
    • 77952386103 scopus 로고    scopus 로고
    • Genetic AnalysisWorkshop 16: Strategies for genome-wide association study analyses
    • Cupples,L.A. et al. (2009) Genetic AnalysisWorkshop 16: Strategies for genome-wide association study analyses. BMC Proc., 3 (Suppl. 7), S1.
    • (2009) BMC Proc , vol.3 , Issue.SUPPL. 7
    • Cupples, L.A.1
  • 10
    • 0036683181 scopus 로고    scopus 로고
    • Linking the genes: inferring quantitative gene networks from microarray data
    • de la Fuente,A. et al. (2002) Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet., 18, 395-398.
    • (2002) Trends Genet , vol.18 , pp. 395-398
    • de la Fuente, A.1
  • 11
    • 39049176465 scopus 로고    scopus 로고
    • Data simulation software for whole-genome association and other studies in human genetics
    • Dudek,S.M. et al. (2006) Data simulation software for whole-genome association and other studies in human genetics. Pac. Symp. Biocomput., 11, 499-510.
    • (2006) Pac. Symp. Biocomput. , vol.11 , pp. 499-510
    • Dudek, S.M.1
  • 13
    • 0001348040 scopus 로고
    • The arrangement of field experiments
    • Fisher,R.A. (1926) The arrangement of field experiments. J. Ministry Agric. Great Britain, 33, 503-511.
    • (1926) J. Ministry Agric. Great Britain , vol.33 , pp. 503-511
    • Fisher, R.A.1
  • 14
    • 0036578654 scopus 로고    scopus 로고
    • Topological and causal structure of the yeast transcriptional regulatory network
    • Guelzim,N. et al. (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet., 31, 60-63.
    • (2002) Nat. Genet. , vol.31 , pp. 60-63
    • Guelzim, N.1
  • 15
    • 0033518234 scopus 로고    scopus 로고
    • From molecular to modular cell biology
    • Hartwell,L.H. et al. (1999) From molecular to modular cell biology. Nature, 402, C47-C52.
    • (1999) Nature , vol.402
    • Hartwell, L.H.1
  • 16
    • 0037306536 scopus 로고    scopus 로고
    • Studying complex biological systems using multifactorial perturbation
    • Jansen,R.C. (2003) Studying complex biological systems using multifactorial perturbation. Nat. Rev. Genet., 4, 145-151.
    • (2003) Nat. Rev. Genet. , vol.4 , pp. 145-151
    • Jansen, R.C.1
  • 17
    • 0035400051 scopus 로고    scopus 로고
    • Genetical genomics: the added value from segregation
    • Jansen,R.C. and Nap,J.P. (2001) Genetical genomics: the added value from segregation. Trends Genet., 17, 388-391.
    • (2001) Trends Genet , vol.17 , pp. 388-391
    • Jansen, R.C.1    Nap, J.P.2
  • 18
    • 33745580270 scopus 로고    scopus 로고
    • The genetics of plant metabolism
    • Keurentjes,J.J. et al. (2006) The genetics of plant metabolism. Nat. Genet., 38, 842-849.
    • (2006) Nat. Genet. , vol.38 , pp. 842-849
    • Keurentjes, J.J.1
  • 19
    • 33749037129 scopus 로고    scopus 로고
    • Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification
    • Lee,S.I. et al. (2006) Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc. Natl Acad. Sci. USA, 103, 14062-14067.
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 14062-14067
    • Lee, S.I.1
  • 20
    • 59249086642 scopus 로고    scopus 로고
    • Learning a prior on regulatory potential from eQTL data
    • Lee,S.I. et al. (2009) Learning a prior on regulatory potential from eQTL data. PLoS Genet., 5, e1000358.
    • (2009) PLoS Genet , vol.5
    • Lee, S.I.1
  • 21
    • 33746623411 scopus 로고    scopus 로고
    • Structural model analysis of multiple quantitative traits
    • Li,R. et al. (2006) Structural model analysis of multiple quantitative traits. PLoS Genet., 2, e114.
    • (2006) PLoS Genet , vol.2
    • Li, R.1
  • 22
    • 45149096374 scopus 로고    scopus 로고
    • Gene network inference via structural equation modeling in genetical genomics experiments
    • Liu,B. et al. (2008) Gene network inference via structural equation modeling in genetical genomics experiments. Genetics, 178, 1763-1776.
    • (2008) Genetics , vol.178 , pp. 1763-1776
    • Liu, B.1
  • 23
    • 58049208229 scopus 로고    scopus 로고
    • Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks
    • Ma'ayan,A. et al. (2008) Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks. Proc. Natl Acad. Sci. USA, 105, 19235-19240.
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 19235-19240
    • Ma'ayan, A.1
  • 24
    • 0042093610 scopus 로고    scopus 로고
    • The connectivity structure, giant strong component and centrality of metabolic networks
    • Ma,H.W. and Zeng,A.P. (2003) The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics, 19, 1423-1430.
    • (2003) Bioinformatics , vol.19 , pp. 1423-1430
    • Ma, H.W.1    Zeng, A.P.2
  • 25
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • Marbach,D. et al. (2009) Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J. Comput. Biol., 16, 229-239.
    • (2009) J. Comput. Biol. , vol.16 , pp. 229-239
    • Marbach, D.1
  • 26
    • 0037108539 scopus 로고    scopus 로고
    • Ingeneue: a versatile tool for reconstituting genetic networks, with examples from the segment polarity network
    • Meir,E. et al. (2002) Ingeneue: a versatile tool for reconstituting genetic networks, with examples from the segment polarity network. J. Exp. Zool., 294, 216-251.
    • (2002) J. Exp. Zool. , vol.294 , pp. 216-251
    • Meir, E.1
  • 27
    • 2942694772 scopus 로고    scopus 로고
    • Artificial gene networks for objective comparison of analysis algorithms
    • Mendes,P. et al. (2003) Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics, 19 (Suppl. 2), ii122-ii129.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Mendes, P.1
  • 28
    • 38049082898 scopus 로고    scopus 로고
    • Genome-wide sparse canonical correlation of gene expression with genotypes
    • Parkhomenko,E. et al. (2007) Genome-wide sparse canonical correlation of gene expression with genotypes. BMC Proc., 1 (Suppl. 1), S119.
    • (2007) BMC Proc , vol.1 , Issue.SUPPL. 1
    • Parkhomenko, E.1
  • 29
    • 57649124192 scopus 로고    scopus 로고
    • Reverse engineering the genotype-phenotype map with natural genetic variation
    • Rockman,M.V. (2008) Reverse engineering the genotype-phenotype map with natural genetic variation. Nature, 456, 738-744.
    • (2008) Nature , vol.456 , pp. 738-744
    • Rockman, M.V.1
  • 30
    • 70249134919 scopus 로고    scopus 로고
    • Molecular networks as sensors and drivers of common human diseases
    • Schadt,E.E. (2009) Molecular networks as sensors and drivers of common human diseases. Nature, 461, 218-223.
    • (2009) Nature , vol.461 , pp. 218-223
    • Schadt, E.E.1
  • 31
    • 0037456823 scopus 로고    scopus 로고
    • Genetics of gene expression surveyed in maize, mouse and man
    • Schadt,E.E. et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature, 422, 297-302.
    • (2003) Nature , vol.422 , pp. 297-302
    • Schadt, E.E.1
  • 32
    • 22844446947 scopus 로고    scopus 로고
    • An integrative genomics approach to infer causal associations between gene expression and disease
    • Schadt,E.E. et al. (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet., 37, 710-717.
    • (2005) Nat. Genet. , vol.37 , pp. 710-717
    • Schadt, E.E.1
  • 33
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • [Epub ahead of print June 22, 2011, doi:10.1093/bioinformatics/btr373]
    • Schaffter,T. et al. (2011) GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics [Epub ahead of print June 22, 2011, doi:10.1093/bioinformatics/btr373].
    • (2011) Bioinformatics
    • Schaffter, T.1
  • 34
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
    • Stolovitzky,G. et al. (2007) Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann. NY Acad. Sci., 1115, 1-22.
    • (2007) Ann. NY Acad. Sci. , vol.1115 , pp. 1-22
    • Stolovitzky, G.1
  • 35
    • 63849210631 scopus 로고    scopus 로고
    • Lessons from the DREAM2 Challenges
    • Stolovitzky,G. et al. (2009) Lessons from the DREAM2 Challenges. Ann. N Y Acad. Sci., 1158, 159-195.
    • (2009) Ann. N Y Acad. Sci. , vol.1158 , pp. 159-195
    • Stolovitzky, G.1
  • 36
    • 38849098283 scopus 로고    scopus 로고
    • Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis
    • Article3
    • Waaijenborg,S. et al. (2008) Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis. Stat. Appl. Genet. Mol. Biol., 7, Article3.
    • (2008) Stat. Appl. Genet. Mol. Biol. , vol.7
    • Waaijenborg, S.1
  • 37
    • 35748941238 scopus 로고    scopus 로고
    • Simulating association studies: a data-based resampling method for candidate regions or whole genome scans
    • Wright,F.A. et al. (2007) Simulating association studies: a data-based resampling method for candidate regions or whole genome scans. Bioinformatics, 23, 2581-2588.
    • (2007) Bioinformatics , vol.23 , pp. 2581-2588
    • Wright, F.A.1
  • 38
    • 76749132132 scopus 로고    scopus 로고
    • A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules
    • e1000642
    • Zhang,W. et al. (2010) A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules. PLoS Comput. Biol., 6, e1000642.
    • (2010) PLoS Comput. Biol. , vol.6
    • Zhang, W.1
  • 39
    • 3242806720 scopus 로고    scopus 로고
    • An integrative genomics approach to the reconstruction of gene networks in segregating populations
    • Zhu,J. et al. (2004) An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res., 105, 363-374.
    • (2004) Cytogenet. Genome Res. , vol.105 , pp. 363-374
    • Zhu, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.