-
1
-
-
85163244001
-
Proceedings of the conference "Strongly coupled Coulomb systems"
-
Proceedings of the conference "Strongly coupled Coulomb systems";, J. Phys. A 42 No. 21 (2009).
-
(2009)
J. Phys. A
, vol.42
, Issue.21
-
-
-
5
-
-
0344717984
-
-
and
-
R. Egger, W. Häusler, C. H. Mak, and H. Grabert, Phys. Rev. Lett. 82, 3320 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3320
-
-
Egger, R.1
Häusler, W.2
Mak, C.H.3
Grabert, H.4
-
7
-
-
0035364606
-
-
and
-
V. S. Filinov, M. Bonitz, W. Ebeling, and V. E. Fortov, Plasma Phys. Control. Fusion 43, 743 (2001).
-
(2001)
Plasma Phys. Control. Fusion
, vol.43
, pp. 743
-
-
Filinov, V.S.1
Bonitz, M.2
Ebeling, W.3
Fortov, V.E.4
-
11
-
-
77955603954
-
-
and
-
M. A. Morales, C. Pierleoni, E. Schwegler, and D. M. Ceperley, PNAS 107, 12799 (2010).
-
(2010)
PNAS
, vol.107
, pp. 12799
-
-
Morales, M.A.1
Pierleoni, C.2
Schwegler, E.3
Ceperley, D.M.4
-
13
-
-
85163244756
-
-
and, Pis'ma Zh. Ekxp. Teor. Fiz. 64, 853 (1996)]
-
N. V. Prokof'ev, B. V. Svistunov, and I. S. Tupitsyn, JETP Lett. 64, 2911 (1996) [Pis'ma Zh. Ekxp. Teor. Fiz. 64, 853 (1996)].
-
(1996)
JETP Lett.
, vol.64
, pp. 2911
-
-
Prokof'ev, N.V.1
Svistunov, B.V.2
Tupitsyn, I.S.3
-
14
-
-
85163247611
-
-
and, Quantum Mechanics and Path Integrals, Mc-Graw Hill, New York 1965
-
R. P. Feynman, and A. R. Hibbs, Quantum Mechanics and Path Integrals, Mc-Graw Hill, New York 1965.
-
-
-
Feynman, R.P.1
Hibbs, A.R.2
-
15
-
-
85163244966
-
-
Introduction to Computational Methods in Many-Body Physics, M. Bonitz and D. Semkat (eds.), Ch. 5. Rinton Press, Princeton (2006)
-
Introduction to Computational Methods in Many-Body Physics, M. Bonitz and D. Semkat (eds.), Ch. 5. Rinton Press, Princeton (2006).
-
-
-
-
16
-
-
85163246314
-
-
We mention previous activities in this direction which used coherent states or Grassmann variables, see e. g. H. Kleinert Path integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific, and references therein, but which have no direct relevance for the present work. More recently such representations for ground state calculations were used in refs. [17] and [18]
-
We mention previous activities in this direction which used coherent states or Grassmann variables, see e. g. H. Kleinert Path integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific, and references therein, but which have no direct relevance for the present work. More recently such representations for ground state calculations were used in refs. [17] and [18].
-
-
-
-
19
-
-
85163243027
-
-
CI (full configuration interaction) is the standard term in quantum chemistry for solution of the stationary Schrödinger equation via exact diagonalization. The method yields the N -particle wave function rather than a density matrix. For an overview, see refs. [20,21]
-
CI (full configuration interaction) is the standard term in quantum chemistry for solution of the stationary Schrödinger equation via exact diagonalization. The method yields the N -particle wave function rather than a density matrix. For an overview, see refs. [20, 21].
-
-
-
-
20
-
-
85163242827
-
-
and, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover 1996
-
A. Szabo, and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover 1996.
-
-
-
Szabo, A.1
Ostlund, N.S.2
-
22
-
-
39349087594
-
-
see e. g., and
-
see e. g.O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, J. Chem. Phys. 127, 154103 (2007).
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 154103
-
-
Alon, O.E.1
Streltsov, A.I.2
Cederbaum, L.S.3
-
24
-
-
85163248055
-
-
Adaptive diagonalization of the N -particle states was shown to yield a considerable reduction of the number of kinks in ground state calculations [17]
-
Adaptive diagonalization of the N -particle states was shown to yield a considerable reduction of the number of kinks in ground state calculations [17].
-
-
-
-
25
-
-
85163244102
-
-
The nested "time" integrals are, in fact, well known from the interaction (Dirac) representation of quantum mechanics
-
The nested "time" integrals are, in fact, well known from the interaction (Dirac) representation of quantum mechanics.
-
-
-
-
26
-
-
67650088363
-
-
and
-
K. Balzer, M. Bonitz, R. van Leeuwen, A. Stan, and N. E. Dahlen, Phys. Rev. B 79, 245306 (2009).
-
(2009)
Phys. Rev. B
, vol.79
, pp. 245306
-
-
Balzer, K.1
Bonitz, M.2
van Leeuwen, R.3
Stan, A.4
Dahlen, N.E.5
-
27
-
-
0000270150
-
-
A similar but approximate scheme was presented by, and
-
A similar but approximate scheme was presented by J. Jaklič, and P. Prelovšek, Phys. Rev. B, 49, 5065-5068 (1994).
-
(1994)
Phys. Rev. B
, vol.49
, pp. 5065-5068
-
-
Jaklič, J.1
Prelovšek, P.2
|