메뉴 건너뛰기




Volumn 58, Issue 2, 2011, Pages 560-571

Utilizing temporal information in fMRI decoding: Classifier using kernel regression methods

Author keywords

FMRI prediction; Kernel methods; Kernel ridge regression (KRR); Machine learning; Multi class; Relevance vector machines (RVM); Support vector machine (SVM); Temporal compacting; Temporal compression

Indexed keywords

ACCURACY; ADULT; ALGORITHM; ARTICLE; BRAIN DEPTH STIMULATION; BRAIN ELECTROPHYSIOLOGY; CLASSIFICATION; CLASSIFIER; COMPUTER ANALYSIS; DECISION MAKING; EVENT RELATED POTENTIAL; FUNCTIONAL ASSESSMENT; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HEMODYNAMICS; HUMAN; HUMAN EXPERIMENT; KERNEL METHOD; MALE; NORMAL HUMAN; PREDICTION; PRIORITY JOURNAL; SUPPORT VECTOR MACHINE; VALIDATION PROCESS;

EID: 80051783097     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2011.06.053     Document Type: Article
Times cited : (22)

References (50)
  • 1
    • 34548832230 scopus 로고    scopus 로고
    • A fast diffeomorphic image registration algorithm
    • Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38:95-113.
    • (2007) Neuroimage , vol.38 , pp. 95-113
    • Ashburner, J.1
  • 6
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • Chapelle O. Training a support vector machine in the primal. Neural Comput. 2007, 19:1155-1178.
    • (2007) Neural Comput. , vol.19 , pp. 1155-1178
    • Chapelle, O.1
  • 7
    • 84861694557 scopus 로고    scopus 로고
    • Moment-by-moment tracking of attentional fluctuation in the human brain
    • Johns Hopkins University
    • Chiu Y.C. Moment-by-moment tracking of attentional fluctuation in the human brain. Department of psychological & brain sciences 2010, Johns Hopkins University.
    • (2010) Department of psychological & brain sciences
    • Chiu, Y.C.1
  • 8
    • 78049513640 scopus 로고    scopus 로고
    • Classification of neurodegenerative diseases using Gaussian process classification with automatic feature determination
    • Chu C., Bandettini P., Ashburner J., Marquand A., Kloeppel S. Classification of neurodegenerative diseases using Gaussian process classification with automatic feature determination. IEEE 2010, 17-20.
    • (2010) IEEE , pp. 17-20
    • Chu, C.1    Bandettini, P.2    Ashburner, J.3    Marquand, A.4    Kloeppel, S.5
  • 10
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex
    • Cox D.D., Savoy R.L. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 2003, 19:261-270.
    • (2003) Neuroimage , vol.19 , pp. 261-270
    • Cox, D.D.1    Savoy, R.L.2
  • 11
  • 14
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
    • De Martino F., Valente G., Staeren N., Ashburner J., Goebel R., Formisano E. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage 2008, 43:44-58.
    • (2008) Neuroimage , vol.43 , pp. 44-58
    • De Martino, F.1    Valente, G.2    Staeren, N.3    Ashburner, J.4    Goebel, R.5    Formisano, E.6
  • 15
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich T.G., Bakiri G. Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 1995, 2:263-286.
    • (1995) J. Artif. Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 16
    • 38349154883 scopus 로고    scopus 로고
    • FMRI activity patterns in human LOC carry information about object exemplars within category
    • Eger E., Ashburner J., Haynes J.D., Dolan R.J., Rees G. fMRI activity patterns in human LOC carry information about object exemplars within category. J. Cogn. Neurosci. 2008, 20:356-370.
    • (2008) J. Cogn. Neurosci. , vol.20 , pp. 356-370
    • Eger, E.1    Ashburner, J.2    Haynes, J.D.3    Dolan, R.J.4    Rees, G.5
  • 21
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with Gaussian process priors
    • Girolami M., Rogers S. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Comput. 2006, 18:1790-1817.
    • (2006) Neural Comput. , vol.18 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 22
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A.e. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 23
    • 34548537654 scopus 로고    scopus 로고
    • Unsupervised analysis of fMRI data using kernel canonical correlation
    • Hardoon D.R., Mourao-Miranda J., Brammer M., Shawe-Taylor J. Unsupervised analysis of fMRI data using kernel canonical correlation. Neuroimage 2007, 37:1250-1259.
    • (2007) Neuroimage , vol.37 , pp. 1250-1259
    • Hardoon, D.R.1    Mourao-Miranda, J.2    Brammer, M.3    Shawe-Taylor, J.4
  • 24
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • Harville D.A. Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Stat. Assoc. 1977, 72:320-338.
    • (1977) J. Am. Stat. Assoc. , vol.72 , pp. 320-338
    • Harville, D.A.1
  • 26
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representations of faces and objects in ventral temporal cortex
    • Haxby J.V., Gobbini M.I., Furey M.L., Ishai A., Schouten J.L., Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001, 293:2425-2430.
    • (2001) Science , vol.293 , pp. 2425-2430
    • Haxby, J.V.1    Gobbini, M.I.2    Furey, M.L.3    Ishai, A.4    Schouten, J.L.5    Pietrini, P.6
  • 27
    • 33745587777 scopus 로고    scopus 로고
    • Decoding mental states from brain activity in humans
    • Haynes J.D., Rees G. Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 2006, 7:523-534.
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 523-534
    • Haynes, J.D.1    Rees, G.2
  • 31
    • 19344370474 scopus 로고    scopus 로고
    • Support vector machines for temporal classification of block design fMRI data
    • LaConte S., Strother S., Cherkassky V., Anderson J., Hu X. Support vector machines for temporal classification of block design fMRI data. Neuroimage 2005, 26:317-329.
    • (2005) Neuroimage , vol.26 , pp. 317-329
    • LaConte, S.1    Strother, S.2    Cherkassky, V.3    Anderson, J.4    Hu, X.5
  • 32
    • 0035849892 scopus 로고    scopus 로고
    • Neurophysiological investigation of the basis of the fMRI signal
    • Logothetis N.K., Pauls J., Augath M., Trinath T., Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412:150-157.
    • (2001) Nature , vol.412 , pp. 150-157
    • Logothetis, N.K.1    Pauls, J.2    Augath, M.3    Trinath, T.4    Oeltermann, A.5
  • 33
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • Mackay D.J.C. The evidence framework applied to classification networks. Neural Comput. 1992, 4:720-736.
    • (1992) Neural Comput. , vol.4 , pp. 720-736
    • Mackay, D.J.C.1
  • 34
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions a review of practical Bayesian methods for supervised neural networks
    • MacKay D.J.C. Probable networks and plausible predictions a review of practical Bayesian methods for supervised neural networks. Netw.: Comput. Neural Syst. 1995, 6:469-505.
    • (1995) Netw.: Comput. Neural Syst. , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 35
    • 77955307443 scopus 로고    scopus 로고
    • Comparison of multivariate classifiers and response normalizations for pattern-information fMRI
    • Misaki M., Kim Y., Bandettini P.A., Kriegeskorte N. Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage 2010, 53:103-118.
    • (2010) Neuroimage , vol.53 , pp. 103-118
    • Misaki, M.1    Kim, Y.2    Bandettini, P.A.3    Kriegeskorte, N.4
  • 37
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data
    • Mourao-Miranda J., Bokde A.L., Born C., Hampel H., Stetter M. Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. Neuroimage 2005, 28:980-995.
    • (2005) Neuroimage , vol.28 , pp. 980-995
    • Mourao-Miranda, J.1    Bokde, A.L.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 38
    • 33750737054 scopus 로고    scopus 로고
    • The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data
    • Mourao-Miranda J., Reynaud E., McGlone F., Calvert G., Brammer M. The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data. Neuroimage 2006, 33:1055-1065.
    • (2006) Neuroimage , vol.33 , pp. 1055-1065
    • Mourao-Miranda, J.1    Reynaud, E.2    McGlone, F.3    Calvert, G.4    Brammer, M.5
  • 39
    • 34247335427 scopus 로고    scopus 로고
    • Dynamic discrimination analysis: a spatial-temporal SVM
    • Mourao-Miranda J., Friston K.J., Brammer M. Dynamic discrimination analysis: a spatial-temporal SVM. Neuroimage 2007, 36:88-99.
    • (2007) Neuroimage , vol.36 , pp. 88-99
    • Mourao-Miranda, J.1    Friston, K.J.2    Brammer, M.3
  • 40
    • 71849083275 scopus 로고    scopus 로고
    • Against hyperacuity in brain reading: spatial smoothing does not hurt multivariate fMRI analyses?
    • Op de Beeck H.P. Against hyperacuity in brain reading: spatial smoothing does not hurt multivariate fMRI analyses?. Neuroimage 2010, 49:1943-1948.
    • (2010) Neuroimage , vol.49 , pp. 1943-1948
    • Op de Beeck, H.P.1
  • 41
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: a fast algorithm for training support vector machines
    • Platt J. Sequential minimal optimization: a fast algorithm for training support vector machines. Advances in Kernel Methods-Support Vector Learning 208 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning 208
    • Platt, J.1
  • 45
    • 7044228130 scopus 로고    scopus 로고
    • Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis
    • Strother S., La Conte S., Kai Hansen L., Anderson J., Zhang J., Pulapura S., Rottenberg D. Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. Neuroimage 2004, 23(Suppl 1):S196-S207.
    • (2004) Neuroimage , vol.23 , Issue.SUPPL 1
    • Strother, S.1    La Conte, S.2    Kai Hansen, L.3    Anderson, J.4    Zhang, J.5    Pulapura, S.6    Rottenberg, D.7
  • 47
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.