메뉴 건너뛰기




Volumn 22, Issue 7, 2011, Pages 643-652

Deconvolving poissonian images by a novel hybrid variational model

Author keywords

Douglas Rachford splitting; Frame coefficients; Hybrid model; Image deconvolution; Maximum a posteriori estimator; Poisson noise; Split Bregman method; Total variation

Indexed keywords

DECONVOLUTION;

EID: 80051607463     PISSN: 10473203     EISSN: 10959076     Source Type: Journal    
DOI: 10.1016/j.jvcir.2011.07.007     Document Type: Article
Times cited : (18)

References (47)
  • 1
    • 85032750912 scopus 로고    scopus 로고
    • Deconvolution method for 3-D fluorescence microscopy images
    • P. Sarder, and A. Nehorai Deconvolution method for 3-D fluorescence microscopy images IEEE Signal Proc. Mag. 23 2006 32 45
    • (2006) IEEE Signal Proc. Mag. , vol.23 , pp. 32-45
    • Sarder, P.1    Nehorai, A.2
  • 3
    • 55549123884 scopus 로고    scopus 로고
    • Restoration of chopped and nodded images by framelets
    • J.-F. Cai, R.H. Chan, L. Shen, and Z. Shen Restoration of chopped and nodded images by framelets SIAM J. Sci. Comput. 30 3 2008 1205 1227
    • (2008) SIAM J. Sci. Comput. , vol.30 , Issue.3 , pp. 1205-1227
    • Cai, J.-F.1    Chan, R.H.2    Shen, L.3    Shen, Z.4
  • 4
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi Nonlinear total variation based noise removal algorithms Physica D 60 1992 259 268
    • (1992) Physica D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 5
    • 33645136947 scopus 로고    scopus 로고
    • Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors
    • J. Bioucas-Dias Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors IEEE Trans. Image Process. 15 2006 937 951
    • (2006) IEEE Trans. Image Process. , vol.15 , pp. 937-951
    • Bioucas-Dias, J.1
  • 6
    • 34247608671 scopus 로고    scopus 로고
    • A comparison of three total variation based texture extraction models
    • DOI 10.1016/j.jvcir.2007.01.004, PII S1047320307000053
    • W.T. Yin, D. Goldfarb, and S. Osher A comparison of three total variation based texture extraction models J. Visual Commun. Image Rep. 18 3 2007 240 252 (Pubitemid 46678858)
    • (2007) Journal of Visual Communication and Image Representation , vol.18 , Issue.3 , pp. 240-252
    • Yin, W.1    Goldfarb, D.2    Osher, S.3
  • 7
    • 0035442514 scopus 로고    scopus 로고
    • Wavelet-based image estimation: An empirical Bayes approach using Jeffreys' noninformative prior
    • DOI 10.1109/83.941856, PII S1057714901074723
    • M. Figueiredo, and R. Nowak Wavelet-based image estimation: An empirical Bayes approach using Jeffreys' noninformative prior IEEE Trans. Image Process. 10 9 2001 1322 1331 (Pubitemid 32949956)
    • (2001) IEEE Transactions on Image Processing , vol.10 , Issue.9 , pp. 1322-1331
    • Figueiredo, M.A.T.1    Nowak, R.D.2
  • 8
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck, and M. Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imaging Sci. 2 2009 183 202
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 9
    • 36749005582 scopus 로고    scopus 로고
    • A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration
    • DOI 10.1109/TIP.2007.909319
    • J. Bioucas-Dias, and M. Figueiredo A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration IEEE Trans. Image Process. 16 12 2007 2992 3004 (Pubitemid 350201232)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.12 , pp. 2992-3004
    • Bioucas-Dias, J.M.1    Figueiredo, M.A.T.2
  • 10
    • 79551550744 scopus 로고    scopus 로고
    • Nesta: A fast and accurate first order method for sparse recovery
    • S. Becker, J. Bobin, and E. Candes Nesta: a fast and accurate first order method for sparse recovery SIAM J. Imaging Sci. 4 1 2011 1 39
    • (2011) SIAM J. Imaging Sci. , vol.4 , Issue.1 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candes, E.3
  • 11
    • 84969334819 scopus 로고    scopus 로고
    • The split Bregman method for L1 regularized problems
    • T. Goldstein, and S. Osher The split Bregman method for L1 regularized problems SIAM J. Imaging Sci. 2 2 2009 323 343
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.2 , pp. 323-343
    • Goldstein, T.1    Osher, S.2
  • 12
    • 85012251675 scopus 로고    scopus 로고
    • A new alternating minimization algorithm for total variation image reconstruction
    • Y. Wang, J. Yang, W. Yin, and Y. Zhang A new alternating minimization algorithm for total variation image reconstruction SIAM J. Imaging Sci. 1 3 2008 248 272
    • (2008) SIAM J. Imaging Sci. , vol.1 , Issue.3 , pp. 248-272
    • Wang, Y.1    Yang, J.2    Yin, W.3    Zhang, Y.4
  • 13
    • 78049353841 scopus 로고    scopus 로고
    • Linearized Bregman iterations for frame-based image deblurring
    • J.-F. Cai, S. Osher, and Z. Shen Linearized Bregman iterations for frame-based image deblurring SIAM J. Imaging Sci. 2 1 2009 226 252
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 226-252
    • Cai, J.-F.1    Osher, S.2    Shen, Z.3
  • 14
    • 77955783919 scopus 로고    scopus 로고
    • Fast image recovery using variable splitting and constrained optimization
    • M. Afonso, J. Bioucas-Dias, and M. Figueiredo Fast image recovery using variable splitting and constrained optimization IEEE Trans. Image Process. 19 9 2010 2345 2356
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.9 , pp. 2345-2356
    • Afonso, M.1    Bioucas-Dias, J.2    Figueiredo, M.3
  • 15
    • 45849138905 scopus 로고    scopus 로고
    • Denoising of frame coefficients using l1 datafidelity term and edge preserving regularization
    • S. Durand, and M. Nikolova Denoising of frame coefficients using l1 datafidelity term and edge preserving regularization SIAM Multiscale Model. Simul. 6 2 2007 547 576
    • (2007) SIAM Multiscale Model. Simul. , vol.6 , Issue.2 , pp. 547-576
    • Durand, S.1    Nikolova, M.2
  • 16
    • 0013277538 scopus 로고    scopus 로고
    • Combining the calculus of variations and wavelets for image enhancement
    • R.R. Coifman, and A. Sowa Combining the calculus of variations and wavelets for image enhancement Appl. Comput. Harmon. Anal. 9 1 2000 1 18
    • (2000) Appl. Comput. Harmon. Anal. , vol.9 , Issue.1 , pp. 1-18
    • Coifman, R.R.1    Sowa, A.2
  • 17
    • 0141975226 scopus 로고    scopus 로고
    • Reconstruction of wavelet coefficients using total variation minimization
    • S. Durand, and J. Froment Reconstruction of wavelet coefficients using total variation minimization SIAM J. Sci. Comput. 24 2003 1754 1767
    • (2003) SIAM J. Sci. Comput. , vol.24 , pp. 1754-1767
    • Durand, S.1    Froment, J.2
  • 18
    • 77949273852 scopus 로고    scopus 로고
    • Multiplicative noise removal using L1 fidelity on frame coefficients
    • S. Durand, J. Fadili, and M. Nikolova Multiplicative noise removal using L1 fidelity on frame coefficients J. Math. Imaging Vision 36 3 2010 201 226
    • (2010) J. Math. Imaging Vision , vol.36 , Issue.3 , pp. 201-226
    • Durand, S.1    Fadili, J.2    Nikolova, M.3
  • 19
    • 0036997203 scopus 로고    scopus 로고
    • Minimizing the total variation under a model convex constraint for image restoration
    • F. Malgouyres Minimizing the total variation under a model convex constraint for image restoration IEEE Trans. Image Process. 11 12 2002 1450 1456
    • (2002) IEEE Trans. Image Process. , vol.11 , Issue.12 , pp. 1450-1456
    • Malgouyres, F.1
  • 20
    • 77249156864 scopus 로고    scopus 로고
    • On the total variation dictionary model
    • T. Zeng, and M. Ng On the total variation dictionary model IEEE Trans. Image Process. 19 3 2010 821 825
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.3 , pp. 821-825
    • Zeng, T.1    Ng, M.2
  • 21
    • 77958555462 scopus 로고    scopus 로고
    • Alternating minimization method for total variation based wavelet shrinkage model
    • T. Zeng, X. Li, and M. Ng Alternating minimization method for total variation based wavelet shrinkage model Commun. Comput. Phys. 8 5 2010 976 994
    • (2010) Commun. Comput. Phys. , vol.8 , Issue.5 , pp. 976-994
    • Zeng, T.1    Li, X.2    Ng, M.3
  • 22
    • 3042616632 scopus 로고    scopus 로고
    • Solving a variational image restoration model which involves l constraints
    • S. Lintner, and F. Malgouyres Solving a variational image restoration model which involves l constraints Inv. Problem 20 3 2004 815 831
    • (2004) Inv. Problem , vol.20 , Issue.3 , pp. 815-831
    • Lintner, S.1    Malgouyres, F.2
  • 25
    • 80052398615 scopus 로고    scopus 로고
    • Primal and Dual Bregman Methods with Application to Optical Nanoscopy
    • doi:10.1007/s11263-010-0339-5 in press
    • C. Brune, A. Sawatzky, M. Burger, Primal and Dual Bregman Methods with Application to Optical Nanoscopy, Int. J. Comput. Vis., in press. doi:10.1007/s11263-010-0339-5.
    • Int. J. Comput. Vis.
    • Brune, C.1    Sawatzky, A.2    Burger, M.3
  • 26
    • 77950043710 scopus 로고    scopus 로고
    • Deblurring Poissonian images by split Bregman techniques
    • S. Setzer, G. Steidl, and T. Teuber Deblurring Poissonian images by split Bregman techniques J. Visual Commun. Image Rep. 21 3 2010 193 199
    • (2010) J. Visual Commun. Image Rep. , vol.21 , Issue.3 , pp. 193-199
    • Setzer, S.1    Steidl, G.2    Teuber, T.3
  • 27
    • 84897352338 scopus 로고    scopus 로고
    • Nested iterative algorithms for convex constrained image recovery problems
    • C. Chaux, J.-C. Pesquet, and N. Pustelnik Nested iterative algorithms for convex constrained image recovery problems SIAM J. Imaging Sci. 2 2 2009 730 762
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.2 , pp. 730-762
    • Chaux, C.1    Pesquet, J.-C.2    Pustelnik, N.3
  • 28
    • 78649287919 scopus 로고    scopus 로고
    • Restoration of Poissonian images using alternating direction optimization
    • M. Figueiredo, and J. Bioucas-Dias Restoration of Poissonian images using alternating direction optimization IEEE Trans. Image Process. 19 12 2010 3133 3145
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.12 , pp. 3133-3145
    • Figueiredo, M.1    Bioucas-Dias, J.2
  • 29
    • 59649106568 scopus 로고    scopus 로고
    • A proximal iteration for deconvolving Poisson noisy images using sparse representations
    • F.-X. Dupe, J.M. Fadili, and J.-L. Starck A proximal iteration for deconvolving Poisson noisy images using sparse representations IEEE Trans. Image Process. 18 2 2009 310 321
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.2 , pp. 310-321
    • Dupe, F.-X.1    Fadili, J.M.2    Starck, J.-L.3
  • 32
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • DOI 10.1137/050626090
    • P. Combettes, and V. Wajs Signal recovery by proximal forward-backward splitting SIAM Multiscale Model. Simul. 4 2005 1168 1200 (Pubitemid 44932287)
    • (2005) Multiscale Modeling and Simulation , vol.4 , Issue.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 33
    • 77952921188 scopus 로고    scopus 로고
    • Split Bregman methods and frame based image restoration
    • J.-F. Cai, S. Osher, and Z. Shen Split Bregman methods and frame based image restoration SIAM Multiscale Model. Simul. 8 2 2009 337 369
    • (2009) SIAM Multiscale Model. Simul. , vol.8 , Issue.2 , pp. 337-369
    • Cai, J.-F.1    Osher, S.2    Shen, Z.3
  • 34
    • 39449085530 scopus 로고    scopus 로고
    • A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery
    • DOI 10.1109/JSTSP.2007.910264
    • P.L. Combettes, and J.-C. Pesquet A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery IEEE J. Sel. Top. Signal Process. 1 2007 564 574 (Pubitemid 351266623)
    • (2007) IEEE Journal on Selected Topics in Signal Processing , vol.1 , Issue.4 , pp. 564-574
    • Combettes, P.L.1    Pesquet, J.-C.2
  • 35
    • 80052211668 scopus 로고    scopus 로고
    • Operator Splittings, Bregman Methods and Frame Shrinkage in image processing
    • doi:10.1007/s11263-010-0357-3 in press
    • S. Setzer, Operator Splittings, Bregman Methods and Frame Shrinkage in image processing, Int. J. Comput. Vis., in press. doi:10.1007/s11263- 010-0357-3.
    • Int. J. Comput. Vis.
    • Setzer, S.1
  • 36
    • 79251599898 scopus 로고    scopus 로고
    • Restoration of images based on subspace optimization accelerating augmented Lagrangian approach
    • D.Q. Chen, L.Z. Cheng, and F. Su Restoration of images based on subspace optimization accelerating augmented Lagrangian approach J. Comput. Appl. Math. 235 8 2011
    • (2011) J. Comput. Appl. Math. , vol.235 , Issue.8
    • Chen, D.Q.1    Cheng, L.Z.2    Su, F.3
  • 37
    • 55349138049 scopus 로고    scopus 로고
    • Iterative algorithms based on decoupling of deblurring and denoising for image restoration
    • Y.-W. Wen, M.K. Ng, and W.-K. Ching Iterative algorithms based on decoupling of deblurring and denoising for image restoration SIAM J. Sci. Comput. 30 5 2008 2655 2674
    • (2008) SIAM J. Sci. Comput. , vol.30 , Issue.5 , pp. 2655-2674
    • Wen, Y.-W.1    Ng, M.K.2    Ching, W.-K.3
  • 39
    • 1242352408 scopus 로고    scopus 로고
    • An algorithm for total variation minimization and applications
    • A. Chambolle An algorithm for total variation minimization and applications J. Math. Imaging Vis. 20 2004 89 97
    • (2004) J. Math. Imaging Vis. , vol.20 , pp. 89-97
    • Chambolle, A.1
  • 40
    • 34249837486 scopus 로고
    • On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
    • J. Eckstein, and D. Bertsekas On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators Math. Program. 55 3 1992 293 318
    • (1992) Math. Program. , vol.55 , Issue.3 , pp. 293-318
    • Eckstein, J.1    Bertsekas, D.2
  • 41
    • 84968481460 scopus 로고
    • Weak convergence of the sequence of successive approximations for nonexpansive mappings
    • Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings Bull. Am. Math. Soc. 73 1967 591 597
    • (1967) Bull. Am. Math. Soc. , vol.73 , pp. 591-597
    • Opial, Z.1
  • 42
    • 57049132103 scopus 로고    scopus 로고
    • Nonlocal operators with applications to image processing
    • G. Gilboa, and S. Osher Nonlocal operators with applications to image processing SIAM Multiscale Model. Simul. 7 3 2008 1005 1028
    • (2008) SIAM Multiscale Model. Simul. , vol.7 , Issue.3 , pp. 1005-1028
    • Gilboa, G.1    Osher, S.2
  • 43
    • 77949265482 scopus 로고    scopus 로고
    • Removing multiplicative noise by Douglas-Rachford splitting methods
    • G. Steidl, and T. Teuber Removing multiplicative noise by Douglas-Rachford splitting methods J. Math. Imaging Vis. 36 2 2010 168 184
    • (2010) J. Math. Imaging Vis. , vol.36 , Issue.2 , pp. 168-184
    • Steidl, G.1    Teuber, T.2
  • 44
    • 77957340547 scopus 로고    scopus 로고
    • Alternative minimisation algorithm for non-local total variational image deblurring
    • D.Q. Chen, and L.Z. Cheng Alternative minimisation algorithm for non-local total variational image deblurring IET Image Process. 4 5 2010 353 364
    • (2010) IET Image Process. , vol.4 , Issue.5 , pp. 353-364
    • Chen, D.Q.1    Cheng, L.Z.2
  • 45
    • 77955186714 scopus 로고    scopus 로고
    • Nonlocal variational model and filter algorithm to remove multiplicative noise
    • D.Q. Chen, H. Zhang, and L.Z. Cheng Nonlocal variational model and filter algorithm to remove multiplicative noise Optical Eng. 49 07 2010 077002
    • (2010) Optical Eng. , vol.49 , Issue.7 , pp. 077002
    • Chen, D.Q.1    Zhang, H.2    Cheng, L.Z.3
  • 46
    • 4344709660 scopus 로고    scopus 로고
    • Symmetric wavelet tight frames with two generators
    • I.W. Selesnick, and A.F. Abdelnour Symmetric wavelet tight frames with two generators Appl. Comput. Harmon. Anal. 17 2 2004 211 225
    • (2004) Appl. Comput. Harmon. Anal. , vol.17 , Issue.2 , pp. 211-225
    • Selesnick, I.W.1    Abdelnour, A.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.