메뉴 건너뛰기




Volumn , Issue , 2011, Pages 9-15

Brain MRI classification using an ensemble system and LH and HL wavelet sub-bands features

Author keywords

classification; MR images; support vector machines; SVM; wavelet transform

Indexed keywords

BASE CLASSIFIERS; BRAIN IMAGES; BRAIN MRI; CLASSIFICATION RATES; CLASSIFICATION SYSTEM; ENSEMBLE CLASSIFIERS; ENSEMBLE SYSTEMS; FIRST-ORDER STATISTICS; K-NEAREST NEIGHBORS; LEARNING VECTOR QUANTIZATION; MR IMAGES; PATHOLOGICAL IMAGES; PROBABILISTIC NEURAL NETWORKS; SECOND-LEVEL; SUB-BANDS; SVM;

EID: 80051593556     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIMI.2011.5952041     Document Type: Conference Paper
Times cited : (27)

References (45)
  • 1
    • 33847043225 scopus 로고    scopus 로고
    • A Slantlet Transform Based Intelligent System for Magnetic Resonance Brain Image Classification
    • M. Maitra and A. Chatterjee, "A Slantlet Transform Based Intelligent System for Magnetic Resonance Brain Image Classification," Biomedical Signal Processing and Control, vol. 1, p. 299-306, 2006.
    • (2006) Biomedical Signal Processing and Control , vol.1 , pp. 299-306
    • Maitra, M.1    Chatterjee, A.2
  • 5
    • 79960864109 scopus 로고    scopus 로고
    • Application of Wavelet Transform and its Advantages Compared to Fourier Transform
    • M. Sifuzzaman, M.R. Islam, and M.Z. Ali, "Application of Wavelet Transform and its Advantages Compared to Fourier Transform," Journal of Physical Sciences, vol. 13, pp.121-134, 2009.
    • (2009) Journal of Physical Sciences , vol.13 , pp. 121-134
    • Sifuzzaman, M.1    Islam, M.R.2    Ali, M.Z.3
  • 6
    • 33751016669 scopus 로고    scopus 로고
    • An Expert System Based on Wavelet Neural Network-Adaptive Norm Entropy for Scale Invariant Texture Classification
    • E. Avci, "An Expert System Based on Wavelet Neural Network-Adaptive Norm Entropy for Scale Invariant Texture Classification," Expert Systems with Applications, vol. 32, issue.3, 2007.
    • (2007) Expert Systems with Applications , vol.32 , Issue.3
    • Avci, E.1
  • 7
    • 47049090821 scopus 로고    scopus 로고
    • Wavelet Transform Feature Extraction from Human PPG, ECG, and EEG Signal Responses to ELF PEMF Exposures: A pilot Study
    • D. Cvetkovic, E.D. Ubeyli, and I. Cosic, "Wavelet Transform Feature Extraction from Human PPG, ECG, and EEG Signal Responses to ELF PEMF Exposures: A pilot Study," Digital Signal Processing, vol. 18, pp.861-874, 2008.
    • (2008) Digital Signal Processing , vol.18 , pp. 861-874
    • Cvetkovic, D.1    Ubeyli, E.D.2    Cosic, I.3
  • 8
    • 33745255698 scopus 로고    scopus 로고
    • Classification of Magnetic Resonance Brain Images using Wavelets as Input to Support Vector Machine and Neural Network
    • S. Chaplot, L.M. Patnaik, and N.R. Jagannathan, "Classification of Magnetic Resonance Brain Images using Wavelets as Input to Support Vector Machine and Neural Network," Biomedical Signal Processing and Control, vol. 1,pp. 86-92, 2006.
    • (2006) Biomedical Signal Processing and Control , vol.1 , pp. 86-92
    • Chaplot, S.1    Patnaik, L.M.2    Jagannathan, N.R.3
  • 9
    • 0032632007 scopus 로고    scopus 로고
    • The Slantlet Transform
    • I.W. Selesnick, "The Slantlet Transform," IEEE Trans. Signal Process, vol. 47, no 5, pp:1304-1313, 1999.
    • (1999) IEEE Trans. Signal Process , vol.47 , Issue.5 , pp. 1304-1313
    • Selesnick, I.W.1
  • 10
    • 76549108474 scopus 로고    scopus 로고
    • Hybrid Intelligent Techniques for MRI Brain Images Classification
    • E.-S.A El-Dahshan, T. Hosny, and A.-B.M. Salem, "Hybrid Intelligent Techniques for MRI Brain Images Classification," Digital Signal Processing, vol 20,pp: 433-441, 2010.
    • (2010) Digital Signal Processing , vol.20 , pp. 433-441
    • El-Dahshan, E.-S.A.1    Hosny, T.2    Salem, A.-B.M.3
  • 11
    • 0024903928 scopus 로고
    • Continuous and Discrete Wavelet Transforms
    • C.E. Heil, and D.F. Walnut, "Continuous and Discrete Wavelet Transforms," SIAM Review, vol. 31, no. 4,pp. 628-666, 1989.
    • (1989) SIAM Review , vol.31 , Issue.4 , pp. 628-666
    • Heil, C.E.1    Walnut, D.F.2
  • 12
    • 33750428171 scopus 로고    scopus 로고
    • Wavelet packet neural networks for texture classification
    • DOI 10.1016/j.eswa.2005.12.013, PII S0957417405003623
    • A. Sengur, I. Turkoglu, and M.C. Ince, "Wavelet Packet Neural Networks for Texture Classification," Expert Systems with Applications, vol. 32, pp:527-533, 2007. (Pubitemid 44647819)
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 527-533
    • Sengur, A.1    Turkoglu, I.2    Ince, M.C.3
  • 13
    • 48349091109 scopus 로고    scopus 로고
    • Texture Analysis and Classification with Linear Regression Model Based on Wavelet Transform
    • Z.-Z. Wang, and J.-H. Yong, "Texture Analysis and Classification with Linear Regression Model Based on Wavelet Transform," IEEE Transactions On Image Processing, vol. 17, no. 8, pp: 1421-1430, 2008.
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.8 , pp. 1421-1430
    • Wang, Z.-Z.1    Yong, J.-H.2
  • 16
    • 0029257114 scopus 로고
    • Texture Analysis in Quantitative MR Imaging
    • L. Kjaer, P. Ring, C. Thomsen, and O. Henriksen, "Texture Analysis in Quantitative MR Imaging," Acta Radiologica, vol. 36, no. 2, pp. 127-135, 1995.
    • (1995) Acta Radiologica , vol.36 , Issue.2 , pp. 127-135
    • Kjaer, L.1    Ring, P.2    Thomsen, C.3    Henriksen, O.4
  • 19
    • 59149100964 scopus 로고    scopus 로고
    • Thermography Based Breast Cancer Analysis using Statistical Features and Fuzzy Classification
    • G. Schaefer, M. Závišek and T. Nakashima, "Thermography Based Breast Cancer Analysis using Statistical Features and Fuzzy Classification," Pattern Recognition, vol. 47, pp:1133-1137, 2009.
    • (2009) Pattern Recognition , vol.47 , pp. 1133-1137
    • Schaefer, G.1    Závišek, M.2    Nakashima, T.3
  • 23
    • 2942717172 scopus 로고    scopus 로고
    • A study of ultrasonic liver images classification with artificial neural networks based on fractal geometry and multiresolution analysis
    • W-L. Lee, K-S. Hsieh, Y-C Chen, and Y-C Chen, "A Study of Ultrasonic Liver Images Classification with Artificial Neural Networks Based on Fractal Geometry and Multiresolution Analysis," biomedical Engineering Applications, Basis, and Communications, No. 16, pp: 59-67, 2004. (Pubitemid 38787506)
    • (2004) Biomedical Engineering - Applications, Basis and Communications , vol.16 , Issue.2 , pp. 59-67
    • Lee, W.-L.1    Hsieh, K.-S.2    Chen, Y.-C.3    Chen, Y.-C.4
  • 25
    • 39049105464 scopus 로고    scopus 로고
    • Online Qualitative Nugget Classification by using a Linear Vector Quantization Neural Network for Resistance Spot Welding
    • M. El-Banna , D. Filev and R. B. Chinnam, "Online Qualitative Nugget Classification by using a Linear Vector Quantization Neural Network for Resistance Spot Welding", The International Journal of Advanced Manufacturing, Vol. 36, pp: 237-249,2008.
    • (2008) The International Journal of Advanced Manufacturing , vol.36 , pp. 237-249
    • El-Banna, M.1    Filev, D.2    Chinnam, R.B.3
  • 27
  • 28
    • 2942717172 scopus 로고    scopus 로고
    • A study of ultrasonic liver images classification with artificial neural networks based on fractal geometry and multiresolution analysis
    • W-L. Lee, K-S. Hsieh, Y-C Chen, and Y-C Chen, "A Study of Ultrasonic Liver Images Classification with Artificial Neural Networks Based on Fractal Geometry and Multiresolution Analysis," Biomedical Engineering Applications, Basis, and Communications, No. 16, pp: 59-67, 2004. (Pubitemid 38787506)
    • (2004) Biomedical Engineering - Applications, Basis and Communications , vol.16 , Issue.2 , pp. 59-67
    • Lee, W.-L.1    Hsieh, K.-S.2    Chen, Y.-C.3    Chen, Y.-C.4
  • 29
    • 0043071489 scopus 로고    scopus 로고
    • Urinary nucleosides as potential tumor markers evaluated by learning vector quantization
    • DOI 10.1016/S0933-3657(03)00058-7
    • F. Dieterle, S. Muller-Hagedorn, H.M. Liebich, G. Gauglitz, "Urinary Nucleosides as Potential Tumor Markers Evaluated by Learning Vector Quantization," Artificial Intelligence in Medicine, Vol. 28, pp: 265-279, 2003. (Pubitemid 36961472)
    • (2003) Artificial Intelligence in Medicine , vol.28 , Issue.3 , pp. 265-279
    • Dieterle, F.1    Muller-Hagedorn, S.2    Liebich, H.M.3    Gauglitz, G.4
  • 32
    • 0025206332 scopus 로고
    • Probabilistic Neural Networks
    • D. Specht, "Probabilistic Neural Networks," Neural Networks, Vol. 3, pp:109-118, 1990.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.1
  • 34
  • 37
    • 0037290179 scopus 로고    scopus 로고
    • Segmentation of ultrasonic images using Support Vector Machines
    • DOI 10.1016/S0167-8655(02)00177-0, PII S0167865502001770
    • C. Kotropoulos, I. Pitas, "Segmentation of Ultrasonic Images using Support Vector Machines," Pattern Recognition Letters, Vol. 24, pp:715-727, 2003. (Pubitemid 35326795)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.4-5 , pp. 715-727
    • Kotropoulos, C.1    Pitas, I.2
  • 38
    • 0033636139 scopus 로고    scopus 로고
    • Support Vector Classification and Validation of Cancer Tissue Samples using Microarray Expression
    • M
    • T.S. Furey, N. Cristianini, N. Duffy, B.W. Bednarski, M. Schummer, M., and D. Haussler, "Support Vector Classification and Validation of Cancer Tissue Samples using Microarray Expression. Bioinformatics, Vol. 16, pp:906-914, 2000.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, B.W.4    Schummer, M.5    Haussler, D.6
  • 39
    • 77956062336 scopus 로고    scopus 로고
    • Predicting Incomplete Gene Microarray Data with the Use of Supervised Learning Algorithms
    • Bhekisipho Twala and Motee Phorah, "Predicting Incomplete Gene Microarray Data with The Use of Supervised Learning Algorithms," Pattern Recognition Letters, Vol. 31, pp:2061-2069, 2010.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 2061-2069
    • Twala, B.1    Phorah, M.2
  • 40
    • 17644374175 scopus 로고    scopus 로고
    • Support Vector Machine-Based Image Classification for Genetic Syndrome Diagnosis
    • Amit David and Boaz Lerner, "Support Vector Machine-Based Image Classification for Genetic Syndrome Diagnosis," Pattern Recognition Letters Vol. 26, pp:1029-1038, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , pp. 1029-1038
    • David, A.1    Lerner, B.2
  • 41
    • 34047267854 scopus 로고    scopus 로고
    • Weather analysis using ensemble of connectionist learning paradigms
    • DOI 10.1016/j.asoc.2006.06.005, PII S1568494606000573
    • I. Maqsood and A. Abraham, "Weather Analysis using Ensemble of Connectionist Learning Paradigms," Applied Soft Computing, Vol. 7, pp: 995-1004, 2007. (Pubitemid 46551933)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.3 , pp. 995-1004
    • Maqsood, I.1    Abraham, A.2
  • 42
    • 34548487769 scopus 로고    scopus 로고
    • Soft computing system for bank performance prediction
    • DOI 10.1016/j.asoc.2007.02.001, PII S156849460700018X
    • V. Ravi, H. Kurniawan, P.N.K Thai, and P.R Kumar," Soft Computing System for Bank Performance Prediction," Applied Soft Computing, Vol. 8 pp:305-315, 2008. (Pubitemid 47374565)
    • (2008) Applied Soft Computing Journal , vol.8 , Issue.1 , pp. 305-315
    • Ravi, V.1    Kurniawan, H.2    Thai, P.N.K.3    Kumar, P.R.4
  • 43
    • 50149086080 scopus 로고    scopus 로고
    • A Novel Ensemble of Classifiers for Microarray Data Classification
    • Y. Chen and Y. Zhao, "A Novel Ensemble of Classifiers for Microarray Data Classification," Applied Soft Computing, Vol. 8, pp:1664-1669, 2008.
    • (2008) Applied Soft Computing , vol.8 , pp. 1664-1669
    • Chen, Y.1    Zhao, Y.2
  • 44
    • 84985773782 scopus 로고
    • Artificial Intelligence and Generalized Qualitative Response Models: An Empirical Test on Two Audit Decision Making Domains
    • J. Hansen, J. McDonald, and J. Slice, "Artificial Intelligence and Generalized Qualitative Response Models: An Empirical Test on Two Audit Decision Making Domains," Decision Sciences, Vol. 23, pp: 708-723,1992.
    • (1992) Decision Sciences , vol.23 , pp. 708-723
    • Hansen, J.1    McDonald, J.2    Slice, J.3
  • 45
    • 0034406219 scopus 로고    scopus 로고
    • Considering Precision of Data in Reduction of Dimensionality and PCA
    • N. Brauner and M. Shacham, "Considering Precision of Data in Reduction of Dimensionality and PCA," Computers and Chemical Engineering, vol. 24, pp: 2603-2611, 2000.
    • (2000) Computers and Chemical Engineering , vol.24 , pp. 2603-2611
    • Brauner, N.1    Shacham, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.